## Problem 319

Let $A, B$, and $C$ be $n \times n$ matrices and $I$ be the $n\times n$ identity matrix.
Prove the following statements.

(a) If $A$ is similar to $B$, then $B$ is similar to $A$.

(b) $A$ is similar to itself.

(c) If $A$ is similar to $B$ and $B$ is similar to $C$, then $A$ is similar to $C$.

(d) If $A$ is similar to the identity matrix $I$, then $A=I$.

(e) If $A$ or $B$ is nonsingular, then $AB$ is similar to $BA$.

(f) If $A$ is similar to $B$, then $A^k$ is similar to $B^k$ for any positive integer $k$.

## Problem 318

Let $R$ be a ring with unity.
Suppose that $f$ and $g$ are ring homomorphisms from $\Q$ to $R$ such that $f(n)=g(n)$ for any integer $n$.

Then prove that $f=g$.

## Problem 317

Suppose that $A$ is a real $n\times n$ matrix.

(a) Is it true that $A$ must commute with its transpose?

(b) Suppose that the columns of $A$ (considered as vectors) form an orthonormal set.
Is it true that the rows of $A$ must also form an orthonormal set?

(University of California, Berkeley, Linear Algebra Qualifying Exam)

## Problem 316

Let $n$ be an odd positive integer.
Determine whether there exists an $n \times n$ real matrix $A$ such that
$A^2+I=O,$ where $I$ is the $n \times n$ identity matrix and $O$ is the $n \times n$ zero matrix.

If such a matrix $A$ exists, find an example. If not, prove that there is no such $A$.

How about when $n$ is an even positive number?

## Problem 315

Let $P_1$ be the vector space of all real polynomials of degree $1$ or less. Consider the linear transformation $T: P_1 \to P_1$ defined by
$T(ax+b)=(3a+b)x+a+3,$ for any $ax+b\in P_1$.

(a) With respect to the basis $B=\{1, x\}$, find the matrix of the linear transformation $T$.

(b) Find a basis $B’$ of the vector space $P_1$ such that the matrix of $T$ with respect to $B’$ is a diagonal matrix.

(c) Express $f(x)=5x+3$ as a linear combination of basis vectors of $B’$.

## Problem 314

Let $T$ be the linear transformation from the vector space $\R^2$ to $\R^2$ itself given by
$T\left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right)= \begin{bmatrix} 3x_1+x_2 \\ x_1+3x_2 \end{bmatrix}.$

(a) Verify that the vectors
$\mathbf{v}_1=\begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ are eigenvectors of the linear transformation $T$, and conclude that $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of $\R^2$ consisting of eigenvectors.

(b) Find the matrix of $T$ with respect to the basis $B=\{\mathbf{v}_1, \mathbf{v}_2\}$.

## Problem 313

(a) Let $A=\begin{bmatrix} 1 & 2 & 1 \\ 3 &6 &4 \end{bmatrix}$ and let
$\mathbf{a}=\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix} 1 \\ 1 \end{bmatrix}.$ For each of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, determine whether the vector is in the null space $\calN(A)$. Do the same for the range $\calR(A)$.

(b) Find a basis of the null space of the matrix $B=\begin{bmatrix} 1 & 1 & 2 \\ -2 &-2 &-4 \end{bmatrix}$.

## Problem 312

Let
$\mathbf{v}=\begin{bmatrix} a \\ b \\ c \end{bmatrix}, \qquad \mathbf{v}_1=\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}.$ Find the necessary and sufficient condition so that the vector $\mathbf{v}$ is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2$.

## Problem 311

Let $A$ and $B$ be $n\times n$ matrices. Then prove that
$\calN(A)\cap \calN(B) \subset \calN(A+B),$ where $\calN(A)$ is the null space (kernel) of the matrix $A$.

## Problem 310

Let $V$ be a real vector space of all real sequences
$(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).$ Let $U$ be the subspace of $V$ consisting of all real sequences that satisfy the linear recurrence relation
$a_{k+2}-5a_{k+1}+3a_{k}=0$ for $k=1, 2, \dots$.
Let $T$ be the linear transformation from $U$ to $U$ defined by
$T\big((a_1, a_2, \dots)\big)=(a_2, a_3, \dots).$

Let $B=\{\mathbf{u}_1, \mathbf{u}_2\}$ be a basis of $U$, where
\begin{align*}
\mathbf{u}_1&=(1, 0, -3, -15, -66, \dots)\\
\mathbf{u}_2&=(0, 1, 5, 22, 95, \dots).
\end{align*}
Let $A$ be the matrix representation of the linear transformation $T: U \to U$ with respect to the basis $B$.

(a) Find the eigenvalues and eigenvectors of $T$.

(b) Use the result of (a), find a sequence $(a_i)_{i=1}^{\infty}$ satisfying the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ and the initial condition $a_1=1, a_2=1$.

(c) Find the formula for the sequences $(a_i)_{i=1}^{\infty}$ satisfying the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ and express it using $a_1, a_2$.

## Problem 309

Let $V$ be a real vector space of all real sequences
$(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).$ Let $U$ be the subspace of $V$ consisting of all real sequences that satisfy the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ for $k=1, 2, \dots$.

(a) Let
\begin{align*}
\mathbf{u}_1&=(1, 0, -3, -15, -66, \dots)\\
\mathbf{u}_2&=(0, 1, 5, 22, 95, \dots)
\end{align*}
be vectors in $U$. Prove that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a basis of $U$ and conclude that the dimension of $U$ is $2$.

(b) Let $T$ be a map from $U$ to $U$ defined by
$T\big((a_1, a_2, \dots)\big)=(a_2, a_3, \dots).$ Verify that the map $T$ actually sends a vector $(a_i)_{i=1}^{\infty}\in V$ to a vector $T\big((a_i)_{i=1}^{\infty}\big)$ in $U$, and show that $T$ is a linear transformation from $U$ to $U$.

(c) With respect to the basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ obtained in (a), find the matrix representation $A$ of the linear transformation $T:U \to U$ from (b).

## Problem 308

Let $V$ be a real vector space of all real sequences
$(a_i)_{i=1}^{\infty}=(a_1, a_2, \cdots).$ Let $U$ be the subset of $V$ defined by
$U=\{ (a_i)_{i=1}^{\infty} \in V \mid a_{k+2}-5a_{k+1}+3a_{k}=0, k=1, 2, \dots \}.$

Prove that $U$ is a subspace of $V$.

## Problem 307

Let $A$ be an abelian group and let $T(A)$ denote the set of elements of $A$ that have finite order.

(a) Prove that $T(A)$ is a subgroup of $A$.

(The subgroup $T(A)$ is called the torsion subgroup of the abelian group $A$ and elements of $T(A)$ are called torsion elements.)

(b) Prove that the quotient group $G=A/T(A)$ is a torsion-free abelian group. That is, the only element of $G$ that has finite order is the identity element.

## Problem 306

Let $G$ be a group with identity element $e$.
Suppose that for any non identity elements $a, b, c$ of $G$ we have
$abc=cba. \tag{*}$ Then prove that $G$ is an abelian group.

## Problem 305

Find a nonzero $3\times 3$ matrix $A$ such that $A^2\neq O$ and $A^3=O$, where $O$ is the $3\times 3$ zero matrix.

(Such a matrix is an example of a nilpotent matrix. See the comment after the solution.)

## Problem 304

Problem 1 Let $W$ be the subset of the $3$-dimensional vector space $\R^3$ defined by
$W=\left\{ \mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\in \R^3 \quad \middle| \quad 2x_1x_2=x_3 \right\}.$

(a) Which of the following vectors are in the subset $W$? Choose all vectors that belong to $W$.
$(1) \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad(2) \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \qquad(3)\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} \qquad(4) \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad(5) \begin{bmatrix} 1 & 2 & 4 \\ 1 &2 &4 \end{bmatrix} \qquad(6) \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}.$

(b) Determine whether $W$ is a subspace of $\R^3$ or not.

Problem 2 Let $W$ be the subset of $\R^3$ defined by
$W=\left\{ \mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3 \quad \middle| \quad x_1=3x_2 \text{ and } x_3=0 \right\}.$ Determine whether the subset $W$ is a subspace of $\R^3$ or not.

## Problem 303

Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors
$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$ Then find the rank of the matrix $A$.

(Purdue University, Linear Algebra Final Exam Problem)

## Problem 302

Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by
$\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,$ where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring homomorphism, called the augmentation map and the kernel of $\epsilon$ is called the augmentation ideal.

(a) Prove that the augmentation ideal in the group ring $RG$ is generated by $\{g-e \mid g\in G\}$.

(b) Prove that if $G=\langle g\rangle$ is a finite cyclic group generated by $g$, then the augmentation ideal is generated by $g-e$.

## Problem 301

Let $A$ be a $3\times 3$ singular matrix.

Then show that there exists a nonzero $3\times 3$ matrix $B$ such that
$AB=O,$ where $O$ is the $3\times 3$ zero matrix.

## Problem 300

Let $A$ be the coefficient matrix of the system of linear equations
\begin{align*}
-x_1-2x_2&=1\\
2x_1+3x_2&=-1.
\end{align*}

(a) Solve the system by finding the inverse matrix $A^{-1}$.

(b) Let $\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be the solution of the system obtained in part (a).
Calculate and simplify
$A^{2017}\mathbf{x}.$

(The Ohio State University, Linear Algebra Midterm Exam Problem)