Determine Linearly Independent or Linearly Dependent. Express as a Linear Combination

Problem 277

Determine whether the following set of vectors is linearly independent or linearly dependent. If the set is linearly dependent, express one vector in the set as a linear combination of the others.
\[\left\{\, \begin{bmatrix}
1 \\
0 \\
-1 \\
0
\end{bmatrix}, \begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}, \begin{bmatrix}
-1 \\
-2 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
-2 \\
-2 \\
7 \\
11
\end{bmatrix}\, \right\}.\]

 
Read solution

LoadingAdd to solve later

Linear Transformation, Basis For the Range, Rank, and Nullity, Not Injective

Problem 276

Let $V$ be the vector space of all $2\times 2$ real matrices and let $P_3$ be the vector space of all polynomials of degree $3$ or less with real coefficients.
Let $T: P_3 \to V$ be the linear transformation defined by
\[T(a_0+a_1x+a_2x^2+a_3x^3)=\begin{bmatrix}
a_0+a_2 & -a_0+a_3\\
a_1-a_2 & -a_1-a_3
\end{bmatrix}\] for any polynomial $a_0+a_1x+a_2x^2+a_3 \in P_3$.
Find a basis for the range of $T$, $\calR(T)$, and determine the rank of $T$, $\rk(T)$, and the nullity of $T$, $\nullity(T)$.
Also, prove that $T$ is not injective.

 
Read solution

LoadingAdd to solve later

The Inverse Matrix of an Upper Triangular Matrix with Variables

Problem 275

Let $A$ be the following $3\times 3$ upper triangular matrix.
\[A=\begin{bmatrix}
1 & x & y \\
0 &1 &z \\
0 & 0 & 1
\end{bmatrix},\] where $x, y, z$ are some real numbers.

Determine whether the matrix $A$ is invertible or not. If it is invertible, then find the inverse matrix $A^{-1}$.

 
Read solution

LoadingAdd to solve later

Quiz 2. The Vector Form For the General Solution / Transpose Matrices. Math 2568 Spring 2017.

Problem 273

(a) The given matrix is the augmented matrix for a system of linear equations.
Give the vector form for the general solution.
\[ \left[\begin{array}{rrrrr|r}
1 & 0 & -1 & 0 &-2 & 0 \\
0 & 1 & 2 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
\end{array} \right].\]

(b) Let
\[A=\begin{bmatrix}
1 & 2 & 3 \\
4 &5 &6
\end{bmatrix}, B=\begin{bmatrix}
1 & 0 & 1 \\
0 &1 &0
\end{bmatrix}, C=\begin{bmatrix}
1 & 2\\
0& 6
\end{bmatrix}, \mathbf{v}=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}.\] Then compute and simplify the following expression.
\[\mathbf{v}^{\trans}\left( A^{\trans}-(A-B)^{\trans}\right)C.\]

 
Read solution

LoadingAdd to solve later

Prove a Given Subset is a Subspace and Find a Basis and Dimension

Problem 270

Let
\[A=\begin{bmatrix}
4 & 1\\
3& 2
\end{bmatrix}\] and consider the following subset $V$ of the 2-dimensional vector space $\R^2$.
\[V=\{\mathbf{x}\in \R^2 \mid A\mathbf{x}=5\mathbf{x}\}.\]

(a) Prove that the subset $V$ is a subspace of $\R^2$.

(b) Find a basis for $V$ and determine the dimension of $V$.

 
Read solution

LoadingAdd to solve later

Eckmann–Hilton Argument: Group Operation is a Group Homomorphism

Problem 268

Let $G$ be a group with the identity element $e$ and suppose that we have a group homomorphism $\phi$ from the direct product $G \times G$ to $G$ satisfying
\[\phi(e, g)=g \text{ and } \phi(g, e)=g, \tag{*}\] for any $g\in G$.

Let $\mu: G\times G \to G$ be a map defined by
\[\mu(g, h)=gh.\] (That is, $\mu$ is the group operation on $G$.)

Then prove that $\phi=\mu$.
Also prove that the group $G$ is abelian.

 
Read solution

LoadingAdd to solve later

Vector Form for the General Solution of a System of Linear Equations

Problem 267

Solve the following system of linear equations by transforming its augmented matrix to reduced echelon form (Gauss-Jordan elimination).

Find the vector form for the general solution.
\begin{align*}
x_1-x_3-3x_5&=1\\
3x_1+x_2-x_3+x_4-9x_5&=3\\
x_1-x_3+x_4-2x_5&=1.
\end{align*}

 
Read solution

LoadingAdd to solve later

Invertible Matrix Satisfying a Quadratic Polynomial

Problem 266

Let $A$ be an $n \times n$ matrix satisfying
\[A^2+c_1A+c_0I=O,\] where $c_0, c_1$ are scalars, $I$ is the $n\times n$ identity matrix, and $O$ is the $n\times n$ zero matrix.

Prove that if $c_0\neq 0$, then the matrix $A$ is invertible (nonsingular).
How about the converse? Namely, is it true that if $c_0=0$, then the matrix $A$ is not invertible?

 
Read solution

LoadingAdd to solve later

Idempotent Matrices. 2007 University of Tokyo Entrance Exam Problem

Problem 265

For a real number $a$, consider $2\times 2$ matrices $A, P, Q$ satisfying the following five conditions.

  1. $A=aP+(a+1)Q$
  2. $P^2=P$
  3. $Q^2=Q$
  4. $PQ=O$
  5. $QP=O$,

where $O$ is the $2\times 2$ zero matrix.
Then do the following problems.


(a) Prove that $(P+Q)A=A$.


(b) Suppose $a$ is a positive real number and let
\[ A=\begin{bmatrix}
a & 0\\
1& a+1
\end{bmatrix}.\] Then find all matrices $P, Q$ satisfying conditions (1)-(5).


(c) Let $n$ be an integer greater than $1$. For any integer $k$, $2\leq k \leq n$, we define the matrix
\[A_k=\begin{bmatrix}
k & 0\\
1& k+1
\end{bmatrix}.\] Then calculate and simplify the matrix product
\[A_nA_{n-1}A_{n-2}\cdots A_2.\]

(Tokyo University Entrance Exam 2007)
 
Read solution

LoadingAdd to solve later

Quiz 1. Gauss-Jordan Elimination / Homogeneous System. Math 2568 Spring 2017.

Problem 262

(a) Solve the following system by transforming the augmented matrix to reduced echelon form (Gauss-Jordan elimination). Indicate the elementary row operations you performed.
\begin{align*}
x_1+x_2-x_5&=1\\
x_2+2x_3+x_4+3x_5&=1\\
x_1-x_3+x_4+x_5&=0
\end{align*}

(b) Determine all possibilities for the solution set of a homogeneous system of $2$ equations in $2$ unknowns that has a solution $x_1=1, x_2=5$.

 
Read solution

LoadingAdd to solve later

Row Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a Matrix

Problem 260

Let \[A=\begin{bmatrix}
1 & 1 & 2 \\
2 &2 &4 \\
2 & 3 & 5
\end{bmatrix}.\]

(a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$.

(b) Find a basis for the null space of $A$.

(c) Find a basis for the range of $A$ that consists of columns of $A$. For each columns, $A_j$ of $A$ that does not appear in the basis, express $A_j$ as a linear combination of the basis vectors.

(d) Exhibit a basis for the row space of $A$.

 
Read solution

LoadingAdd to solve later

Determine a Matrix From Its Eigenvalue

Problem 259

Let
\[A=\begin{bmatrix}
a & -1\\
1& 4
\end{bmatrix}\] be a $2\times 2$ matrix, where $a$ is some real number.
Suppose that the matrix $A$ has an eigenvalue $3$.

(a) Determine the value of $a$.

(b) Does the matrix $A$ have eigenvalues other than $3$?

 
Read solution

LoadingAdd to solve later

Linear Combination of Eigenvectors is Not an Eigenvector

Problem 258

Suppose that $\lambda$ and $\mu$ are two distinct eigenvalues of a square matrix $A$ and let $\mathbf{x}$ and $\mathbf{y}$ be eigenvectors corresponding to $\lambda$ and $\mu$, respectively.
If $a$ and $b$ are nonzero numbers, then prove that $a \mathbf{x}+b\mathbf{y}$ is not an eigenvector of $A$ (corresponding to any eigenvalue of $A$).

 
Read solution

LoadingAdd to solve later