Find Values of $a$ so that Augmented Matrix Represents a Consistent System

Problem 249

Suppose that the following matrix $A$ is the augmented matrix for a system of linear equations.
\[A= \left[\begin{array}{rrr|r}
1 & 2 & 3 & 4 \\
2 &-1 & -2 & a^2 \\
-1 & -7 & -11 & a
\end{array} \right],\] where $a$ is a real number. Determine all the values of $a$ so that the corresponding system is consistent.

Read solution

LoadingAdd to solve later

Condition that Two Matrices are Row Equivalent

Problem 248

We say that two $m\times n$ matrices are row equivalent if one can be obtained from the other by a sequence of elementary row operations.

Let $A$ and $I$ be $2\times 2$ matrices defined as follows.
1 & b\\
c& d
\end{bmatrix}, \qquad I=\begin{bmatrix}
1 & 0\\
0& 1
\end{bmatrix}.\] Prove that the matrix $A$ is row equivalent to the matrix $I$ if $d-cb \neq 0$.
Read solution

LoadingAdd to solve later

Primary Ideals, Prime Ideals, and Radical Ideals

Problem 247

Let $R$ be a commutative ring with unity. A proper ideal $I$ of $R$ is called primary if whenever $ab \in I$ for $a, b\in R$, then either $a\in I$ or $b^n\in I$ for some positive integer $n$.

(a) Prove that a prime ideal $P$ of $R$ is primary.

(b) If $P$ is a prime ideal and $a^n\in P$ for some $a\in R$ and a positive integer $n$, then show that $a\in P$.

(c) If $P$ is a prime ideal, prove that $\sqrt{P}=P$.

(d) If $Q$ is a primary ideal, prove that the radical ideal $\sqrt{Q}$ is a prime ideal.

Read solution

LoadingAdd to solve later

Equivalent Definitions of Characteristic Subgroups. Center is Characteristic.

Problem 246

Let $H$ be a subgroup of a group $G$. We call $H$ characteristic in $G$ if for any automorphism $\sigma\in \Aut(G)$ of $G$, we have $\sigma(H)=H$.

(a) Prove that if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$.

(b) Prove that the center $Z(G)$ of $G$ is characteristic in $G$.

Read solution

LoadingAdd to solve later

A Group Homomorphism is Injective if and only if Monic

Problem 243

Let $f:G\to G’$ be a group homomorphism. We say that $f$ is monic whenever we have $fg_1=fg_2$, where $g_1:K\to G$ and $g_2:K \to G$ are group homomorphisms for some group $K$, we have $g_1=g_2$.

Then prove that a group homomorphism $f: G \to G’$ is injective if and only if it is monic.

Read solution

LoadingAdd to solve later

No Finite Abelian Group is Divisible

Problem 240

A nontrivial abelian group $A$ is called divisible if for each element $a\in A$ and each nonzero integer $k$, there is an element $x \in A$ such that $x^k=a$.
(Here the group operation of $A$ is written multiplicatively. In additive notation, the equation is written as $kx=a$.) That is, $A$ is divisible if each element has a $k$-th root in $A$.

(a) Prove that the additive group of rational numbers $\Q$ is divisible.

(b) Prove that no finite abelian group is divisible.

Read solution

LoadingAdd to solve later

Orthogonality of Eigenvectors of a Symmetric Matrix Corresponding to Distinct Eigenvalues

Problem 235

Suppose that a real symmetric matrix $A$ has two distinct eigenvalues $\alpha$ and $\beta$.
Show that any eigenvector corresponding to $\alpha$ is orthogonal to any eigenvector corresponding to $\beta$.

(Nagoya University, Linear Algebra Final Exam Problem)
Read solution

LoadingAdd to solve later

Explicit Field Isomorphism of Finite Fields

Problem 233

(a) Let $f_1(x)$ and $f_2(x)$ be irreducible polynomials over a finite field $\F_p$, where $p$ is a prime number. Suppose that $f_1(x)$ and $f_2(x)$ have the same degrees. Then show that fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic.

(b) Show that the polynomials $x^3-x+1$ and $x^3-x-1$ are both irreducible polynomials over the finite field $\F_3$.

(c) Exhibit an explicit isomorphism between the splitting fields of $x^3-x+1$ and $x^3-x-1$ over $\F_3$.

Read solution

LoadingAdd to solve later

Polynomial $x^p-x+a$ is Irreducible and Separable Over a Finite Field

Problem 229

Let $p\in \Z$ be a prime number and let $\F_p$ be the field of $p$ elements.
For any nonzero element $a\in \F_p$, prove that the polynomial
\[f(x)=x^p-x+a\] is irreducible and separable over $F_p$.

(Dummit and Foote “Abstract Algebra” Section 13.5 Exercise #5 on p.551)

Read solution

LoadingAdd to solve later