Mathematics About the Number 2017
Happy New Year 2017!!
Here is the list of mathematical facts about the number 2017 that you can brag about to your friends or family as a math geek.

Happy New Year 2017!!
Here is the list of mathematical facts about the number 2017 that you can brag about to your friends or family as a math geek.
Let $A$ be an $n \times n$ matrix. Suppose that all the eigenvalues $\lambda$ of $A$ are real and satisfy $\lambda <1$.
Then show that the determinant \[ \det(I-A) >0,\] where $I$ is the $n \times n$ identity matrix.
Let $V$ denote the vector space of all real $n\times n$ matrices, where $n$ is a positive integer.
Determine whether the set $U$ of all $n\times n$ nilpotent matrices is a subspace of the vector space $V$ or not.
Suppose that a real symmetric matrix $A$ has two distinct eigenvalues $\alpha$ and $\beta$.
Show that any eigenvector corresponding to $\alpha$ is orthogonal to any eigenvector corresponding to $\beta$.
(Nagoya University, Linear Algebra Final Exam Problem)
Read solution
Show that the polynomial
\[f(x)=x^4-2x-1\]
is irreducible over the field of rational numbers $\Q$.
(a) Let $f_1(x)$ and $f_2(x)$ be irreducible polynomials over a finite field $\F_p$, where $p$ is a prime number. Suppose that $f_1(x)$ and $f_2(x)$ have the same degrees. Then show that fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic.
(b) Show that the polynomials $x^3-x+1$ and $x^3-x-1$ are both irreducible polynomials over the finite field $\F_3$.
(c) Exhibit an explicit isomorphism between the splitting fields of $x^3-x+1$ and $x^3-x-1$ over $\F_3$.
Let $G$ be a group and let $H$ be a subgroup of finite index. Then show that there exists a normal subgroup $N$ of $G$ such that $N$ is of finite index in $G$ and $N\subset H$.
Show that $\Q(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, that is, it is a Galois extension of degree $4$ with cyclic Galois group.
Let $\Q$ be the field of rational numbers.
(a) Is the polynomial $f(x)=x^2-2$ separable over $\Q$?
(b) Find the Galois group of $f(x)$ over $\Q$.
Let $p\in \Z$ be a prime number and let $\F_p$ be the field of $p$ elements.
For any nonzero element $a\in \F_p$, prove that the polynomial
\[f(x)=x^p-x+a\]
is irreducible and separable over $F_p$.
(Dummit and Foote “Abstract Algebra” Section 13.5 Exercise #5 on p.551)
Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.
Suppose that $G$ is a finite group of order $p^an$, where $p$ is a prime number and $p$ does not divide $n$.
Let $N$ be a normal subgroup of $G$ such that the index $|G: N|$ is relatively prime to $p$.
Then show that $N$ contains all $p$-Sylow subgroups of $G$.
Let $G$ be a finite group. Suppose that $p$ is a prime number that divides the order of $G$.
Let $N$ be a normal subgroup of $G$ and let $P$ be a $p$-Sylow subgroup of $G$.
Show that if $P$ is normal in $N$, then $P$ is a normal subgroup of $G$.
Show that a group $G$ is cyclic if and only if there exists a surjective group homomorphism from the additive group $\Z$ of integers to the group $G$.
In the ring
\[\Z[\sqrt{2}]=\{a+\sqrt{2}b \mid a, b \in \Z\},\]
show that $5$ is a prime element but $7$ is not a prime element.
Consider the ring
\[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}\]
and its ideal
\[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}.\]
Show that $p$ is a prime ideal of the ring $\Z[\sqrt{10}]$.
Suppose that $n\times n$ matrices $A$ and $B$ are similar.
Then show that the nullity of $A$ is equal to the nullity of $B$.
In other words, the dimension of the null space (kernel) $\calN(A)$ of $A$ is the same as the dimension of the null space $\calN(B)$ of $B$.
Let $p$ be a prime number. Let
\[G=\{z\in \C \mid z^{p^n}=1\} \]
be the group of $p$-power roots of $1$ in $\C$.
Show that the map $\Psi:G\to G$ mapping $z$ to $z^p$ is a surjective homomorphism.
Also deduce from this that $G$ is isomorphic to a proper quotient of $G$ itself.
Let $R$ be a commutative ring. Suppose that $P$ is a prime ideal of $R$ containing no nonzero zero divisor. Then show that the ring $R$ is an integral domain.
Use Lagrange’s Theorem in the multiplicative group $(\Zmod{p})^{\times}$ to prove Fermat’s Little Theorem: if $p$ is a prime number then $a^p \equiv a \pmod p$ for all $a \in \Z$.