## Subgroup Containing All $p$-Sylow Subgroups of a Group

## Problem 227

Suppose that $G$ is a finite group of order $p^an$, where $p$ is a prime number and $p$ does not divide $n$.

Let $N$ be a normal subgroup of $G$ such that the index $|G: N|$ is relatively prime to $p$.

Then show that $N$ contains all $p$-Sylow subgroups of $G$.

Add to solve later