The Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral Domain

Problem 198

Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain.

Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a field.

 
Read solution

LoadingAdd to solve later

Find Values of $h$ so that the Given Vectors are Linearly Independent

Problem 194

Find the value(s) of $h$ for which the following set of vectors
\[\left \{ \mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
h \\
1 \\
-h
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
1 \\
2h \\
3h+1
\end{bmatrix}\right\}\] is linearly independent.

(Boston College, Linear Algebra Midterm Exam Sample Problem)
 
Read solution

LoadingAdd to solve later

Compute Determinant of a Matrix Using Linearly Independent Vectors

Problem 193

Let $A$ be a $3 \times 3$ matrix.
Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have
\[A\mathbf{x}=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, A\mathbf{y}=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, A\mathbf{z}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}.\]

Then find the value of the determinant of the matrix $A$.

 
Read solution

LoadingAdd to solve later

Given All Eigenvalues and Eigenspaces, Compute a Matrix Product

Problem 189

Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces
\[E_2=\Span\left \{\quad \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix}
1 \\
2 \\
1 \\
1
\end{bmatrix},\quad \begin{bmatrix}
1 \\
1 \\
1 \\
2
\end{bmatrix} \quad\right\}.\]

Calculate $C^4 \mathbf{u}$ for $\mathbf{u}=\begin{bmatrix}
6 \\
8 \\
6 \\
9
\end{bmatrix}$ if possible. Explain why if it is not possible!

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Ring of Gaussian Integers and Determine its Unit Elements

Problem 188

Denote by $i$ the square root of $-1$.
Let
\[R=\Z[i]=\{a+ib \mid a, b \in \Z \}\] be the ring of Gaussian integers.
We define the norm $N:\Z[i] \to \Z$ by sending $\alpha=a+ib$ to
\[N(\alpha)=\alpha \bar{\alpha}=a^2+b^2.\]

Here $\bar{\alpha}$ is the complex conjugate of $\alpha$.
Then show that an element $\alpha \in R$ is a unit if and only if the norm $N(\alpha)=\pm 1$.
Also, determine all the units of the ring $R=\Z[i]$ of Gaussian integers.

 
Read solution

LoadingAdd to solve later

Two Eigenvectors Corresponding to Distinct Eigenvalues are Linearly Independent

Problem 187

Let $A$ be an $n\times n$ matrix. Suppose that $\lambda_1, \lambda_2$ are distinct eigenvalues of the matrix $A$ and let $\mathbf{v}_1, \mathbf{v}_2$ be eigenvectors corresponding to $\lambda_1, \lambda_2$, respectively.

Show that the vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent.

 
Read solution

LoadingAdd to solve later

Eigenvalues of a Stochastic Matrix is Always Less than or Equal to 1

Problem 185

Let $A=(a_{ij})$ be an $n \times n$ matrix.
We say that $A=(a_{ij})$ is a right stochastic matrix if each entry $a_{ij}$ is nonnegative and the sum of the entries of each row is $1$. That is, we have
\[a_{ij}\geq 0 \quad \text{ and } \quad a_{i1}+a_{i2}+\cdots+a_{in}=1\] for $1 \leq i, j \leq n$.

Let $A=(a_{ij})$ be an $n\times n$ right stochastic matrix. Then show the following statements.

(a)The stochastic matrix $A$ has an eigenvalue $1$.

(b) The absolute value of any eigenvalue of the stochastic matrix $A$ is less than or equal to $1$.

 
Read solution

LoadingAdd to solve later

Linear Transformation and a Basis of the Vector Space $\R^3$

Problem 182

Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$.
Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$.

Show that the vectors $\mathbf{x}, T\mathbf{x}, T^2\mathbf{x}$ form a basis for $\R^3$.

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam)

Problem 181

Suppose that $\begin{bmatrix}
1 \\
1
\end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix}
2 \\
1
\end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$.
Compute $A^2\begin{bmatrix}
4 \\
3
\end{bmatrix}$.

(Stanford University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Determine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a Matrix

Problem 180

Suppose the following information is known about a $3\times 3$ matrix $A$.
\[A\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}=6\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix},
\quad
A\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}=3\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}, \quad
A\begin{bmatrix}
2 \\
-1 \\
0
\end{bmatrix}=3\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}.\]

(a) Find the eigenvalues of $A$.

(b) Find the corresponding eigenspaces.

(c) In each of the following questions, you must give a correct reason (based on the theory of eigenvalues and eigenvectors) to get full credit.
Is $A$ a diagonalizable matrix?
Is $A$ an invertible matrix?
Is $A$ an idempotent matrix?

(Johns Hopkins University Linear Algebra Exam)
 
Read solution

LoadingAdd to solve later