Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam)

Problem 181

Suppose that $\begin{bmatrix}
1 \\
1
\end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix}
2 \\
1
\end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$.
Compute $A^2\begin{bmatrix}
4 \\
3
\end{bmatrix}$.

(Stanford University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Determine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a Matrix

Problem 180

Suppose the following information is known about a $3\times 3$ matrix $A$.
\[A\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}=6\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix},
\quad
A\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}=3\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}, \quad
A\begin{bmatrix}
2 \\
-1 \\
0
\end{bmatrix}=3\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}.\]

(a) Find the eigenvalues of $A$.

(b) Find the corresponding eigenspaces.

(c) In each of the following questions, you must give a correct reason (based on the theory of eigenvalues and eigenvectors) to get full credit.
Is $A$ a diagonalizable matrix?
Is $A$ an invertible matrix?
Is $A$ an idempotent matrix?

(Johns Hopkins University Linear Algebra Exam)
 
Read solution

LoadingAdd to solve later

Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam)

Problem 178

Let
\[\begin{bmatrix}
0 & 0 & 1 \\
1 &0 &0 \\
0 & 1 & 0
\end{bmatrix}.\]

(a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers?

(b) Calculate $A^{2009}$.

(Princeton University, Linear Algebra Exam)
 
Read solution

LoadingAdd to solve later

Idempotent Matrix and its Eigenvalues

Problem 176

Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$.

(a) Find a nonzero, nonidentity idempotent matrix.

(b) Show that eigenvalues of an idempotent matrix $A$ is either $0$ or $1$.

(The Ohio State University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Prime Ideal is Irreducible in a Commutative Ring

Problem 173

Let $R$ be a commutative ring. An ideal $I$ of $R$ is said to be irreducible if it cannot be written as an intersection of two ideals of $R$ which are strictly larger than $I$.

Prove that if $\frakp$ is a prime ideal of the commutative ring $R$, then $\frakp$ is irreducible.

 
Read solution

LoadingAdd to solve later

Subspace of Skew-Symmetric Matrices and Its Dimension

Problem 166

Let $V$ be the vector space of all $2\times 2$ matrices. Let $W$ be a subset of $V$ consisting of all $2\times 2$ skew-symmetric matrices. (Recall that a matrix $A$ is skew-symmetric if $A^{\trans}=-A$.)

(a) Prove that the subset $W$ is a subspace of $V$.

(b) Find the dimension of $W$.

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Vector Space of Polynomials and a Basis of Its Subspace

Problem 165

Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
\[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where
\begin{align*}
&p_1(x)=1, &p_2(x)=x^2+x+1, \\
&p_3(x)=2x^2, &p_4(x)=x^2-x+1.
\end{align*}

(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.

(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.

(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

A Matrix Representation of a Linear Transformation and Related Subspaces

Problem 164

Let $T:\R^4 \to \R^3$ be a linear transformation defined by
\[ T\left (\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} \,\right) = \begin{bmatrix}
x_1+2x_2+3x_3-x_4 \\
3x_1+5x_2+8x_3-2x_4 \\
x_1+x_2+2x_3
\end{bmatrix}.\]

(a) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$.

(b) Find a basis for the null space of $T$.

(c) Find the rank of the linear transformation $T$.

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Inner Product, Norm, and Orthogonal Vectors

Problem 162

Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in $\mathbf{u_1}=\mathbf{u_2}+a\mathbf{u}_3$.

(The Ohio State University, Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later