Two Subspaces Intersecting Trivially, and the Direct Sum of Vector Spaces.

Problem 61

Let $V$ and $W$ be subspaces of $\R^n$ such that $V \cap W =\{\mathbf{0}\}$ and $\dim(V)+\dim(W)=n$.

(a) If $\mathbf{v}+\mathbf{w}=\mathbf{0}$, where $\mathbf{v}\in V$ and $\mathbf{w}\in W$, then show that $\mathbf{v}=\mathbf{0}$ and $\mathbf{w}=\mathbf{0}$.

(b) If $B_1$ is a basis for the subspace $V$ and $B_2$ is a basis for the subspace $W$, then show that the union $B_1\cup B_2$ is a basis for $R^n$.

(c) If $\mathbf{x}$ is in $\R^n$, then show that $\mathbf{x}$ can be written in the form $\mathbf{x}=\mathbf{v}+\mathbf{w}$, where $\mathbf{v}\in V$ and $\mathbf{w} \in W$.

(d) Show that the representation obtained in part (c) is unique.

Read solution

LoadingAdd to solve later

Projection to the subspace spanned by a vector

Problem 60

Let $T: \R^3 \to \R^3$ be the linear transformation given by orthogonal projection to the line spanned by $\begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix}$.

(a) Find a formula for $T(\mathbf{x})$ for $\mathbf{x}\in \R^3$.

(b) Find a basis for the image subspace of $T$.

(c) Find a basis for the kernel subspace of $T$.

(d) Find the $3 \times 3$ matrix for $T$ with respect to the standard basis for $\R^3$.

(e) Find a basis for the orthogonal complement of the kernel of $T$. (The orthogonal complement is the subspace of all vectors perpendicular to a given subspace, in this case, the kernel.)

(f) Find a basis for the orthogonal complement of the image of $T$.

(g) What is the rank of $T$?

(Johns Hopkins University Exam)

Read solution

LoadingAdd to solve later

A Square Root Matrix of a Symmetric Matrix

Problem 59

Answer the following two questions with justification.

(a) Does there exist a $2 \times 2$ matrix $A$ with $A^3=O$ but $A^2 \neq O$? Here $O$ denotes the $2 \times 2$ zero matrix.

(b) Does there exist a $3 \times 3$ real matrix $B$ such that $B^2=A$ where
\[A=\begin{bmatrix}
1 & -1 & 0 \\
-1 &2 &-1 \\
0 & -1 & 1
\end{bmatrix}\,\,\,\,?\]

(Princeton University Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Centralizer, Normalizer, and Center of the Dihedral Group $D_{8}$

Problem 53

Let $D_8$ be the dihedral group of order $8$.
Using the generators and relations, we have
\[D_{8}=\langle r,s \mid r^4=s^2=1, sr=r^{-1}s\rangle.\]

(a) Let $A$ be the subgroup of $D_8$ generated by $r$, that is, $A=\{1,r,r^2,r^3\}$.
Prove that the centralizer $C_{D_8}(A)=A$.

(b) Show that the normalizer $N_{D_8}(A)=D_8$.

(c) Show that the center $Z(D_8)=\langle r^2 \rangle=\{1,r^2\}$, the subgroup generated by $r^2$.

Read solution

LoadingAdd to solve later

Dihedral Group and Rotation of the Plane

Problem 52

Let $n$ be a positive integer. Let $D_{2n}$ be the dihedral group of order $2n$. Using the generators and the relations, the dihedral group $D_{2n}$ is given by
\[D_{2n}=\langle r,s \mid r^n=s^2=1, sr=r^{-1}s\rangle.\] Put $\theta=2 \pi/n$.


(a) Prove that the matrix $\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{bmatrix}$ is the matrix representation of the linear transformation $T$ which rotates the $x$-$y$ plane about the origin in a counterclockwise direction by $\theta$ radians.


(b) Let $\GL_2(\R)$ be the group of all $2 \times 2$ invertible matrices with real entries. Show that the map $\rho: D_{2n} \to \GL_2(\R)$ defined on the generators by
\[ \rho(r)=\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{bmatrix} \text{ and }
\rho(s)=\begin{bmatrix}
0 & 1\\
1& 0
\end{bmatrix}\] extends to a homomorphism of $D_{2n}$ into $\GL_2(\R)$.


(c) Determine whether the homomorphism $\rho$ in part (b) is injective and/or surjective.

Read solution

LoadingAdd to solve later

All the Eigenvectors of a Matrix Are Eigenvectors of Another Matrix

Problem 51

Let $A$ and $B$ be an $n \times n$ matrices.
Suppose that all the eigenvalues of $A$ are distinct and the matrices $A$ and $B$ commute, that is $AB=BA$.

Then prove that each eigenvector of $A$ is an eigenvector of $B$.

(It could be that each eigenvector is an eigenvector for distinct eigenvalues.)

Read solution

LoadingAdd to solve later

Find the Limit of a Matrix

Problem 50

Let
\[A=\begin{bmatrix}
\frac{1}{7} & \frac{3}{7} & \frac{3}{7} \\
\frac{3}{7} &\frac{1}{7} &\frac{3}{7} \\
\frac{3}{7} & \frac{3}{7} & \frac{1}{7}
\end{bmatrix}\] be $3 \times 3$ matrix. Find

\[\lim_{n \to \infty} A^n.\]

(Nagoya University Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Linearly Independent/Dependent Vectors Question

Problem 48

Let $V$ be an $n$-dimensional vector space over a field $K$.
Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent vectors in $V$.

Are the following vectors linearly independent?

\[\mathbf{v}_1+\mathbf{v}_2, \quad \mathbf{v}_2+\mathbf{v}_3, \quad \dots, \quad \mathbf{v}_{k-1}+\mathbf{v}_k, \quad \mathbf{v}_k+\mathbf{v}_1.\]

If it is linearly dependent, give a non-trivial linear combination of these vectors summing up to the zero vector.

Read solution

LoadingAdd to solve later

Calculate Determinants of Matrices

Problem 45

Calculate the determinants of the following $n\times n$ matrices.
\[A=\begin{bmatrix}
1 & 0 & 0 & \dots & 0 & 0 &1 \\
1 & 1 & 0 & \dots & 0 & 0 & 0 \\
0 & 1 & 1 & \dots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \dots & \dots & \ddots & \vdots \\
0 & 0 & 0 &\dots & 1 & 1 & 0\\
0 & 0 & 0 &\dots & 0 & 1 & 1
\end{bmatrix}\]

The entries of $A$ is $1$ at the diagonal entries, entries below the diagonal, and $(1, n)$-entry.
The other entries are zero.
\[B=\begin{bmatrix}
1 & 0 & 0 & \dots & 0 & 0 & -1 \\
-1 & 1 & 0 & \dots & 0 & 0 & 0 \\
0 & -1 & 1 & \dots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \dots & \dots & \ddots & \vdots \\
0 & 0 & 0 &\dots & -1 & 1 & 0\\
0 & 0 & 0 &\dots & 0 & -1 & 1
\end{bmatrix}.\]

The entries of $B$ is $1$ at the diagonal entries.
The entries below the diagonal and $(1,n)$-entry are $-1$.
The other entries are zero.

Read solution

LoadingAdd to solve later

Find a Matrix that Maps Given Vectors to Given Vectors

Problem 44

Suppose that a real matrix $A$ maps each of the following vectors
\[\mathbf{x}_1=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}, \mathbf{x}_2=\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}, \mathbf{x}_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \] into the vectors
\[\mathbf{y}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \mathbf{y}_2=\begin{bmatrix}
-1 \\
0 \\
3
\end{bmatrix}, \mathbf{y}_3=\begin{bmatrix}
3 \\
1 \\
1
\end{bmatrix},\] respectively.
That is, $A\mathbf{x}_i=\mathbf{y}_i$ for $i=1,2,3$.
Find the matrix $A$.

(Kyoto University Exam)
Read solution

LoadingAdd to solve later

Find All Matrices Satisfying a Given Relation

Problem 43

Let $a$ and $b$ be two distinct positive real numbers. Define matrices
\[A:=\begin{bmatrix}
0 & a\\
a & 0
\end{bmatrix}, \,\,
B:=\begin{bmatrix}
0 & b\\
b& 0
\end{bmatrix}.\]

Find all the pairs $(\lambda, X)$, where $\lambda$ is a real number and $X$ is a non-zero real matrix satisfying the relation
\[AX+XB=\lambda X. \tag{*} \]

 

(The University of Tokyo Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Symmetric Matrix and Its Eigenvalues, Eigenspaces, and Eigenspaces

Problem 42

Let $A$ be a $4\times 4$ real symmetric matrix. Suppose that $\mathbf{v}_1=\begin{bmatrix}
-1 \\
2 \\
0 \\
-1
\end{bmatrix}$ is an eigenvector corresponding to the eigenvalue $1$ of $A$.
Suppose that the eigenspace for the eigenvalue $2$ is $3$-dimensional.

(a) Find an orthonormal basis for the eigenspace of the eigenvalue $2$ of $A$.

(b) Find $A\mathbf{v}$, where
\[ \mathbf{v}=\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}.\]

 

(The University of Tokyo Linear Algebra Exam)

Read solution

LoadingAdd to solve later