True or False Quiz About a System of Linear Equations

Problem 78

Determine whether the following sentence is True or False.

(Purdue University Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Is the Product of a Nilpotent Matrix and an Invertible Matrix Nilpotent?

Problem 77

A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix.

(a) If $A$ is a nilpotent $n \times n$ matrix and $B$ is an $n\times n$ matrix such that $AB=BA$. Show that the product $AB$ is nilpotent.

(b) Let $P$ be an invertible $n \times n$ matrix and let $N$ be a nilpotent $n\times n$ matrix. Is the product $PN$ nilpotent? If so, prove it. If not, give a counterexample.

 

Read solution

LoadingAdd to solve later

A Linear Transformation from Vector Space over Rational Numbers to itself

Problem 75

Let $\Q$ denote the set of rational numbers (i.e., fractions of integers). Let $V$ denote the set of the form $x+y \sqrt{2}$ where $x,y \in \Q$. You may take for granted that the set $V$ is a vector space over the field $\Q$.

(a) Show that $B=\{1, \sqrt{2}\}$ is a basis for the vector space $V$ over $\Q$.

(b) Let $\alpha=a+b\sqrt{2} \in V$, and let $T_{\alpha}: V \to V$ be the map defined by
\[ T_{\alpha}(x+y\sqrt{2}):=(ax+2by)+(ay+bx)\sqrt{2}\in V\] for any $x+y\sqrt{2} \in V$.
Show that $T_{\alpha}$ is a linear transformation.

(c) Let $\begin{bmatrix}
x \\
y
\end{bmatrix}_B=x+y \sqrt{2}$.
Find the matrix $T_B$ such that
\[ T_{\alpha} (x+y \sqrt{2})=\left( T_B\begin{bmatrix}
x \\
y
\end{bmatrix}\right)_B,\] and compute $\det T_B$.

 

(The Ohio State University, Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Conditions on Coefficients that a Matrix is Nonsingular

Problem 72

(a) Let $A=(a_{ij})$ be an $n\times n$ matrix. Suppose that the entries of the matrix $A$ satisfy the following relation.
\[|a_{ii}|>|a_{i1}|+\cdots +|a_{i\,i-1}|+|a_{i \, i+1}|+\cdots +|a_{in}|\] for all $1 \leq i \leq n$.
Show that the matrix $A$ is nonsingular.

(b) Let $B=(b_{ij})$ be an $n \times n$ matrix whose entries satisfy the relation
\[ |b_{i\,i}|=1 \hspace{0.5cm} \text{ and }\hspace{0.5cm} |b_{ij}|<\frac{1}{n-1}\] for all $i$ and $j$ with $i \neq j$.
Prove that the matrix $B$ is nonsingular.

(c)
Determine whether the following matrix is nonsingular or not.
\[C=\begin{bmatrix}
\pi & e & e^2/2\pi^2 \\[5 pt] e^2/2\pi^2 &\pi &e \\[5pt] e & e^2/2\pi^2 & \pi
\end{bmatrix},\] where $\pi=3.14159\dots$, and $e=2.71828\dots$ is Euler’s number (or Napier’s constant).

 

Read solution

LoadingAdd to solve later

Matrix Representations for Linear Transformations of the Vector Space of Polynomials

Problem 71

Let $P_2(\R)$ be the vector space over $\R$ consisting of all polynomials with real coefficients of degree $2$ or less.
Let $B=\{1,x,x^2\}$ be a basis of the vector space $P_2(\R)$.
For each linear transformation $T:P_2(\R) \to P_2(\R)$ defined below, find the matrix representation of $T$ with respect to the basis $B$. For $f(x)\in P_2(\R)$, define $T$ as follows.

(a) \[T(f(x))=\frac{\mathrm{d}^2}{\mathrm{d}x^2} f(x)-3\frac{\mathrm{d}}{\mathrm{d}x}f(x)\]

(b) \[T(f(x))=\int_{-1}^1\! (t-x)^2f(t) \,\mathrm{d}t\]

(c) \[T(f(x))=e^x \frac{\mathrm{d}}{\mathrm{d}x}(e^{-x}f(x))\]

 

Read solution

LoadingAdd to solve later

Is an Eigenvector of a Matrix an Eigenvector of its Inverse?

Problem 70

Suppose that $A$ is an $n \times n$ matrix with eigenvalue $\lambda$ and corresponding eigenvector $\mathbf{v}$.

(a) If $A$ is invertible, is $\mathbf{v}$ an eigenvector of $A^{-1}$? If so, what is the corresponding eigenvalue? If not, explain why not.

(b) Is $3\mathbf{v}$ an eigenvector of $A$? If so, what is the corresponding eigenvalue? If not, explain why not.

 

(Stanford University, Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Matrices Satisfying $HF-FH=-2F$

Problem 69

Let $F$ and $H$ be an $n\times n$ matrices satisfying the relation
\[HF-FH=-2F.\]

(a) Find the trace of the matrix $F$.

(b) Let $\lambda$ be an eigenvalue of $H$ and let $\mathbf{v}$ be an eigenvector corresponding to $\lambda$. Show that there exists an positive integer $N$ such that $F^N\mathbf{v}=\mathbf{0}$.

Read solution

LoadingAdd to solve later

Matrices Satisfying the Relation $HE-EH=2E$

Problem 68

Let $H$ and $E$ be $n \times n$ matrices satisfying the relation
\[HE-EH=2E.\] Let $\lambda$ be an eigenvalue of the matrix $H$ such that the real part of $\lambda$ is the largest among the eigenvalues of $H$.
Let $\mathbf{x}$ be an eigenvector corresponding to $\lambda$. Then prove that
\[E\mathbf{x}=\mathbf{0}.\]

Read solution

LoadingAdd to solve later

True or False: Eigenvalues of a Real Matrix Are Real Numbers

Problem 67

Answer the following questions regarding eigenvalues of a real matrix.

(a) True or False. If each entry of an $n \times n$ matrix $A$ is a real number, then the eigenvalues of $A$ are all real numbers.
(b) Find the eigenvalues of the matrix
\[B=\begin{bmatrix}
-2 & -1\\
5& 2
\end{bmatrix}.\]

(The Ohio State University, Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Linear Independent Vectors, Invertible Matrix, and Expression of a Vector as a Linear Combinations

Problem 66

Consider the matrix
\[A=\begin{bmatrix}
1 & 2 & 1 \\
2 &5 &4 \\
1 & 1 & 0
\end{bmatrix}.\]


(a) Calculate the inverse matrix $A^{-1}$. If you think the matrix $A$ is not invertible, then explain why.


(b) Are the vectors
\[ \mathbf{A}_1=\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}, \mathbf{A}_2=\begin{bmatrix}
2 \\
5 \\
1
\end{bmatrix},
\text{ and } \mathbf{A}_3=\begin{bmatrix}
1 \\
4 \\
0
\end{bmatrix}\] linearly independent?


(c) Write the vector $\mathbf{b}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}$ as a linear combination of $\mathbf{A}_1$, $\mathbf{A}_2$, and $\mathbf{A}_3$.

(The Ohio State University, Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Solving a System of Linear Equations By Using an Inverse Matrix

Problem 65

Consider the system of linear equations
\begin{align*}
x_1&= 2, \\
-2x_1 + x_2 &= 3, \\
5x_1-4x_2 +x_3 &= 2
\end{align*}

(a) Find the coefficient matrix and its inverse matrix.

(b) Using the inverse matrix, solve the system of linear equations.

(The Ohio State University, Linear Algebra Exam)

Read solution

LoadingAdd to solve later

If the Images of Vectors are Linearly Independent, then They Are Linearly Independent

Problem 62

Let $T: \R^n \to \R^m$ be a linear transformation.
Suppose that $S=\{\mathbf{x}_1, \mathbf{x}_2,\dots, \mathbf{x}_k\}$ is a subset of $\R^n$ such that $\{T(\mathbf{x}_1), T(\mathbf{x}_2), \dots, T(\mathbf{x}_k) \}$ is a linearly independent subset of $\R^m$.

Prove that the set $S$ is linearly independent.

 

Read solution

LoadingAdd to solve later

Two Subspaces Intersecting Trivially, and the Direct Sum of Vector Spaces.

Problem 61

Let $V$ and $W$ be subspaces of $\R^n$ such that $V \cap W =\{\mathbf{0}\}$ and $\dim(V)+\dim(W)=n$.

(a) If $\mathbf{v}+\mathbf{w}=\mathbf{0}$, where $\mathbf{v}\in V$ and $\mathbf{w}\in W$, then show that $\mathbf{v}=\mathbf{0}$ and $\mathbf{w}=\mathbf{0}$.

(b) If $B_1$ is a basis for the subspace $V$ and $B_2$ is a basis for the subspace $W$, then show that the union $B_1\cup B_2$ is a basis for $R^n$.

(c) If $\mathbf{x}$ is in $\R^n$, then show that $\mathbf{x}$ can be written in the form $\mathbf{x}=\mathbf{v}+\mathbf{w}$, where $\mathbf{v}\in V$ and $\mathbf{w} \in W$.

(d) Show that the representation obtained in part (c) is unique.

Read solution

LoadingAdd to solve later

Projection to the subspace spanned by a vector

Problem 60

Let $T: \R^3 \to \R^3$ be the linear transformation given by orthogonal projection to the line spanned by $\begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix}$.

(a) Find a formula for $T(\mathbf{x})$ for $\mathbf{x}\in \R^3$.

(b) Find a basis for the image subspace of $T$.

(c) Find a basis for the kernel subspace of $T$.

(d) Find the $3 \times 3$ matrix for $T$ with respect to the standard basis for $\R^3$.

(e) Find a basis for the orthogonal complement of the kernel of $T$. (The orthogonal complement is the subspace of all vectors perpendicular to a given subspace, in this case, the kernel.)

(f) Find a basis for the orthogonal complement of the image of $T$.

(g) What is the rank of $T$?

(Johns Hopkins University Exam)

Read solution

LoadingAdd to solve later

A Square Root Matrix of a Symmetric Matrix

Problem 59

Answer the following two questions with justification.

(a) Does there exist a $2 \times 2$ matrix $A$ with $A^3=O$ but $A^2 \neq O$? Here $O$ denotes the $2 \times 2$ zero matrix.

(b) Does there exist a $3 \times 3$ real matrix $B$ such that $B^2=A$ where
\[A=\begin{bmatrix}
1 & -1 & 0 \\
-1 &2 &-1 \\
0 & -1 & 1
\end{bmatrix}\,\,\,\,?\]

(Princeton University Linear Algebra Exam)

Read solution

LoadingAdd to solve later