Compute $A^5\mathbf{u}$ Using Linear Combination

Problem 696

Let
\[A=\begin{bmatrix}
-4 & -6 & -12 \\
-2 &-1 &-4 \\
2 & 3 & 6
\end{bmatrix}, \quad \mathbf{u}=\begin{bmatrix}
6 \\
5 \\
-3
\end{bmatrix}, \quad \mathbf{v}=\begin{bmatrix}
-2 \\
0 \\
1
\end{bmatrix}, \quad \text{ and } \mathbf{w}=\begin{bmatrix}
-2 \\
-1 \\
1
\end{bmatrix}.\]

(a) Express the vector $\mathbf{u}$ as a linear combination of $\mathbf{v}$ and $\mathbf{w}$.

(b) Compute $A^5\mathbf{v}$.

(c) Compute $A^5\mathbf{w}$.

(d) Compute $A^5\mathbf{u}$.

 
Read solution

LoadingAdd to solve later

If the Augmented Matrix is Row-Equivalent to the Identity Matrix, is the System Consistent?

Problem 695

Consider the following system of linear equations:
\begin{align*}
ax_1+bx_2 &=c\\
dx_1+ex_2 &=f\\
gx_1+hx_2 &=i.
\end{align*}

(a) Write down the augmented matrix.

(b) Suppose that the augmented matrix is row equivalent to the identity matrix. Is the system consistent? Justify your answer.

 
Read solution

LoadingAdd to solve later

Elementary Questions about a Matrix

Problem 693

Let
\[A=\begin{bmatrix}
-5 & 0 & 1 & 2 \\
3 &8 & -3 & 7 \\
0 & 11 & 13 & 28
\end{bmatrix}.\]

(a) What is the size of the matrix $A$?
(b) What is the third column of $A$?
(c) Let $a_{ij}$ be the $(i,j)$-entry of $A$. Calculate $a_{23}-a_{31}$.

 
Read solution

LoadingAdd to solve later

Are these vectors in the Nullspace of the Matrix?

Problem 692

Let $A=\begin{bmatrix}
1 & 0 & 3 & -2 \\
0 &3 & 1 & 1 \\
1 & 3 & 4 & -1
\end{bmatrix}$. For each of the following vectors, determine whether the vector is in the nullspace $\calN(A)$.

(a) $\begin{bmatrix}
-3 \\
0 \\
1 \\
0
\end{bmatrix}$

(b) $\begin{bmatrix}
-4 \\
-1 \\
2 \\
1
\end{bmatrix}$

(c) $\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}$

(d) $\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$

Then, describe the nullspace $\calN(A)$ of the matrix $A$.

 
Read solution

LoadingAdd to solve later

Spanning Sets for $\R^2$ or its Subspaces

Problem 691

In this problem, we use the following vectors in $\R^2$.
\[\mathbf{a}=\begin{bmatrix}
1 \\
0
\end{bmatrix}, \mathbf{b}=\begin{bmatrix}
1 \\
1
\end{bmatrix}, \mathbf{c}=\begin{bmatrix}
2 \\
3
\end{bmatrix}, \mathbf{d}=\begin{bmatrix}
3 \\
2
\end{bmatrix}, \mathbf{e}=\begin{bmatrix}
0 \\
0
\end{bmatrix}, \mathbf{f}=\begin{bmatrix}
5 \\
6
\end{bmatrix}.\] For each set $S$, determine whether $\Span(S)=\R^2$. If $\Span(S)\neq \R^2$, then give algebraic description for $\Span(S)$ and explain the geometric shape of $\Span(S)$.

(a) $S=\{\mathbf{a}, \mathbf{b}\}$
(b) $S=\{\mathbf{a}, \mathbf{c}\}$
(c) $S=\{\mathbf{c}, \mathbf{d}\}$
(d) $S=\{\mathbf{a}, \mathbf{f}\}$
(e) $S=\{\mathbf{e}, \mathbf{f}\}$
(f) $S=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
(g) $S=\{\mathbf{e}\}$

 
Read solution

LoadingAdd to solve later

Is the Derivative Linear Transformation Diagonalizable?

Problem 690

Let $\mathrm{P}_2$ denote the vector space of polynomials of degree $2$ or less, and let $T : \mathrm{P}_2 \rightarrow \mathrm{P}_2$ be the derivative linear transformation, defined by
\[ T( ax^2 + bx + c ) = 2ax + b . \]

Is $T$ diagonalizable? If so, find a diagonal matrix which represents $T$. If not, explain why not.

 
Read solution

LoadingAdd to solve later

Dot Product, Lengths, and Distances of Complex Vectors

Problem 689

For this problem, use the complex vectors
\[ \mathbf{w}_1 = \begin{bmatrix} 1 + i \\ 1 – i \\ 0 \end{bmatrix} , \, \mathbf{w}_2 = \begin{bmatrix} -i \\ 0 \\ 2 – i \end{bmatrix} , \, \mathbf{w}_3 = \begin{bmatrix} 2+i \\ 1 – 3i \\ 2i \end{bmatrix} . \]

Suppose $\mathbf{w}_4$ is another complex vector which is orthogonal to both $\mathbf{w}_2$ and $\mathbf{w}_3$, and satisfies $\mathbf{w}_1 \cdot \mathbf{w}_4 = 2i$ and $\| \mathbf{w}_4 \| = 3$.

Calculate the following expressions:

(a) $ \mathbf{w}_1 \cdot \mathbf{w}_2 $.

(b) $ \mathbf{w}_1 \cdot \mathbf{w}_3 $.

(c) $((2+i)\mathbf{w}_1 – (1+i)\mathbf{w}_2 ) \cdot \mathbf{w}_4$.

(d) $\| \mathbf{w}_1 \| , \| \mathbf{w}_2 \|$, and $\| \mathbf{w}_3 \|$.

(e) $\| 3 \mathbf{w}_4 \|$.

(f) What is the distance between $\mathbf{w}_2$ and $\mathbf{w}_3$?

 
Read solution

LoadingAdd to solve later

How to Obtain Information of a Vector if Information of Other Vectors are Given

Problem 688

Let $A$ be a $3\times 3$ matrix and let
\[\mathbf{v}=\begin{bmatrix}
1 \\
2 \\
-1
\end{bmatrix} \text{ and } \mathbf{w}=\begin{bmatrix}
2 \\
-1 \\
3
\end{bmatrix}.\] Suppose that $A\mathbf{v}=-\mathbf{v}$ and $A\mathbf{w}=2\mathbf{w}$.
Then find the vector
\[A^5\begin{bmatrix}
-1 \\
8 \\
-9
\end{bmatrix}.\]

 
Read solution

LoadingAdd to solve later

Inner Products, Lengths, and Distances of 3-Dimensional Real Vectors

Problem 687

For this problem, use the real vectors
\[ \mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} , \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} , \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} . \] Suppose that $\mathbf{v}_4$ is another vector which is orthogonal to $\mathbf{v}_1$ and $\mathbf{v}_3$, and satisfying
\[ \mathbf{v}_2 \cdot \mathbf{v}_4 = -3 . \]

Calculate the following expressions:

(a) $\mathbf{v}_1 \cdot \mathbf{v}_2 $.

(b) $\mathbf{v}_3 \cdot \mathbf{v}_4$.

(c) $( 2 \mathbf{v}_1 + 3 \mathbf{v}_2 – \mathbf{v}_3 ) \cdot \mathbf{v}_4 $.

(d) $\| \mathbf{v}_1 \| , \, \| \mathbf{v}_2 \| , \, \| \mathbf{v}_3 \| $.

(e) What is the distance between $\mathbf{v}_1$ and $\mathbf{v}_2$?

 
Read solution

LoadingAdd to solve later

Given the Data of Eigenvalues, Determine if the Matrix is Invertible

Problem 686

In each of the following cases, can we conclude that $A$ is invertible? If so, find an expression for $A^{-1}$ as a linear combination of positive powers of $A$. If $A$ is not invertible, explain why not.

(a) The matrix $A$ is a $3 \times 3$ matrix with eigenvalues $\lambda=i , \lambda=-i$, and $\lambda=0$.

(b) The matrix $A$ is a $3 \times 3$ matrix with eigenvalues $\lambda=i , \lambda=-i$, and $\lambda=-1$.

 
Read solution

LoadingAdd to solve later

A Recursive Relationship for a Power of a Matrix

Problem 685

Suppose that the $2 \times 2$ matrix $A$ has eigenvalues $4$ and $-2$. For each integer $n \geq 1$, there are real numbers $b_n , c_n$ which satisfy the relation
\[ A^{n} = b_n A + c_n I , \] where $I$ is the identity matrix.

Find $b_n$ and $c_n$ for $2 \leq n \leq 5$, and then find a recursive relationship to find $b_n, c_n$ for every $n \geq 1$.

 
Read solution

LoadingAdd to solve later

The Rotation Matrix is an Orthogonal Transformation

Problem 684

Let $\mathbb{R}^2$ be the vector space of size-2 column vectors. This vector space has an inner product defined by $ \langle \mathbf{v} , \mathbf{w} \rangle = \mathbf{v}^\trans \mathbf{w}$. A linear transformation $T : \R^2 \rightarrow \R^2$ is called an orthogonal transformation if for all $\mathbf{v} , \mathbf{w} \in \R^2$,
\[\langle T(\mathbf{v}) , T(\mathbf{w}) \rangle = \langle \mathbf{v} , \mathbf{w} \rangle.\]

For a fixed angle $\theta \in [0, 2 \pi )$ , define the matrix
\[ [T] = \begin{bmatrix} \cos (\theta) & – \sin ( \theta ) \\ \sin ( \theta ) & \cos ( \theta ) \end{bmatrix} \] and the linear transformation $T : \R^2 \rightarrow \R^2$ by
\[T( \mathbf{v} ) = [T] \mathbf{v}.\]

Prove that $T$ is an orthogonal transformation.

 
Read solution

LoadingAdd to solve later

Find a Basis for the Range of a Linear Transformation of Vector Spaces of Matrices

Problem 682

Let $V$ denote the vector space of $2 \times 2$ matrices, and $W$ the vector space of $3 \times 2$ matrices. Define the linear transformation $T : V \rightarrow W$ by
\[T \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a+b & 2d \\ 2b – d & -3c \\ 2b – c & -3a \end{bmatrix}.\]

Find a basis for the range of $T$.

 
Read solution

LoadingAdd to solve later

The Matrix Exponential of a Diagonal Matrix

Problem 681

For a square matrix $M$, its matrix exponential is defined by
\[e^M = \sum_{i=0}^\infty \frac{M^k}{k!}.\]

Suppose that $M$ is a diagonal matrix
\[ M = \begin{bmatrix} m_{1 1} & 0 & 0 & \cdots & 0 \\ 0 & m_{2 2} & 0 & \cdots & 0 \\ 0 & 0 & m_{3 3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & m_{n n} \end{bmatrix}.\]

Find the matrix exponential $e^M$.

 
Read solution

LoadingAdd to solve later

Find the Nullspace and Range of the Linear Transformation $T(f)(x) = f(x)-f(0)$

Problem 680

Let $C([-1, 1])$ denote the vector space of real-valued functions on the interval $[-1, 1]$. Define the vector subspace
\[W = \{ f \in C([-1, 1]) \mid f(0) = 0 \}.\]

Define the map $T : C([-1, 1]) \rightarrow W$ by $T(f)(x) = f(x) – f(0)$. Determine if $T$ is a linear map. If it is, determine its nullspace and range.

 
Read solution

LoadingAdd to solve later