## Prove that $\mathbf{v} \mathbf{v}^\trans$ is a Symmetric Matrix for any Vector $\mathbf{v}$

## Problem 640

Let $\mathbf{v}$ be an $n \times 1$ column vector.

Prove that $\mathbf{v} \mathbf{v}^\trans$ is a symmetric matrix.

Add to solve laterLet $\mathbf{v}$ be an $n \times 1$ column vector.

Prove that $\mathbf{v} \mathbf{v}^\trans$ is a symmetric matrix.

Add to solve laterLet $\mathbf{v}$ be an $n \times 1$ column vector.

Prove that $\mathbf{v}^\trans \mathbf{v} = 0$ if and only if $\mathbf{v}$ is the zero vector $\mathbf{0}$.

Add to solve laterLet $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors.

Prove that $\tr ( \mathbf{v} \mathbf{w}^\trans ) = \mathbf{v}^\trans \mathbf{w}$.

Add to solve laterLet $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors.

**(a)** Prove that $\mathbf{v}^\trans \mathbf{w} = \mathbf{w}^\trans \mathbf{v}$.

**(b)** Provide an example to show that $\mathbf{v} \mathbf{w}^\trans$ is not always equal to $\mathbf{w} \mathbf{v}^\trans$.

Calculate the following expressions, using the following matrices:

\[A = \begin{bmatrix} 2 & 3 \\ -5 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}\]

**(a)** $A B^\trans + \mathbf{v} \mathbf{v}^\trans$.

**(b)** $A \mathbf{v} – 2 \mathbf{v}$.

**(c)** $\mathbf{v}^{\trans} B$.

**(d)** $\mathbf{v}^\trans \mathbf{v} + \mathbf{v}^\trans B A^\trans \mathbf{v}$.

Let $A$ and $B$ be $n \times n$ matrices, and $\mathbf{v}$ an $n \times 1$ column vector.

Use the matrix components to prove that $(A + B) \mathbf{v} = A\mathbf{v} + B\mathbf{v}$.

Add to solve laterLet $A$ and $B$ be $n \times n$ matrices.

Is it always true that $\tr (A B) = \tr (A) \tr (B) $?

If it is true, prove it. If not, give a counterexample.

Add to solve laterLet $A$ be an $n \times n$ matrix.

Is it true that $\tr ( A^\trans ) = \tr(A)$? If it is true, prove it. If not, give a counterexample.

Add to solve laterSuppose that $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for $\R^2$. Let $S:=[\mathbf{v}_1, \mathbf{v}_2]$.

Note that as the column vectors of $S$ are linearly independent, the matrix $S$ is invertible.

Prove that for each vector $\mathbf{v} \in V$, the vector $S^{-1}\mathbf{v}$ is the coordinate vector of $\mathbf{v}$ with respect to the basis $B$.

Add to solve laterLet $A=\begin{bmatrix}

a & b\\

c& d

\end{bmatrix}$ be an $2\times 2$ matrix.

Express the eigenvalues of $A$ in terms of the trace and the determinant of $A$.

Add to solve laterConsider the matrix $A=\begin{bmatrix}

a & -b\\

b& a

\end{bmatrix}$, where $a$ and $b$ are real numbers and $b\neq 0$.

**(a)** Find all eigenvalues of $A$.

**(b)** For each eigenvalue of $A$, determine the eigenspace $E_{\lambda}$.

**(c)** Diagonalize the matrix $A$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

Diagonalize the $2\times 2$ matrix $A=\begin{bmatrix}

2 & -1\\

-1& 2

\end{bmatrix}$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

Let $G$ be a group of order $57$. Assume that $G$ is not a cyclic group.

Then determine the number of elements in $G$ of order $3$.

Read solution

Determine whether the function $T:\R^2 \to \R^3$ defined by

\[T\left(\, \begin{bmatrix}

x \\

y

\end{bmatrix} \,\right)

=

\begin{bmatrix}

x_+y \\

x+1 \\

3y

\end{bmatrix}\]
is a linear transformation.

Let $G$ be a group. Suppose that the number of elements in $G$ of order $5$ is $28$.

Determine the number of distinct subgroups of $G$ of order $5$.

Add to solve laterLet $G$ be a group and let $H_1, H_2$ be subgroups of $G$ such that $H_1 \not \subset H_2$ and $H_2 \not \subset H_1$.

**(a)** Prove that the union $H_1 \cup H_2$ is never a subgroup in $G$.

**(b)** Prove that a group cannot be written as the union of two proper subgroups.

Let $R$ and $R’$ be commutative rings and let $f:R\to R’$ be a ring homomorphism.

Let $I$ and $I’$ be ideals of $R$ and $R’$, respectively.

**(a)** Prove that $f(\sqrt{I}\,) \subset \sqrt{f(I)}$.

**(b)** Prove that $\sqrt{f^{-1}(I’)}=f^{-1}(\sqrt{I’})$

**(c)** Suppose that $f$ is surjective and $\ker(f)\subset I$. Then prove that $f(\sqrt{I}\,) =\sqrt{f(I)}$

Let $I=(x, 2)$ and $J=(x, 3)$ be ideal in the ring $\Z[x]$.

**(a)** Prove that $IJ=(x, 6)$.

**(b)** Prove that the element $x\in IJ$ cannot be written as $x=f(x)g(x)$, where $f(x)\in I$ and $g(x)\in J$.

Let $A$ be an $n\times n$ matrix. Suppose that the sum of elements in each row of $A$ is zero.

Then prove that the matrix $A$ is singular.

Add to solve later Let $G$ be a finite group and let $N$ be a normal subgroup of $G$.

Suppose that the order $n$ of $N$ is relatively prime to the index $|G:N|=m$.

**(a)** Prove that $N=\{a\in G \mid a^n=e\}$.

**(b)** Prove that $N=\{b^m \mid b\in G\}$.