Vector Space of 2 by 2 Traceless Matrices

Problem 601

Let $V$ be the vector space of all $2\times 2$ matrices whose entries are real numbers.
Let
\[W=\left\{\, A\in V \quad \middle | \quad A=\begin{bmatrix}
a & b\\
c& -a
\end{bmatrix} \text{ for any } a, b, c\in \R \,\right\}.\]

(a) Show that $W$ is a subspace of $V$.

(b) Find a basis of $W$.

(c) Find the dimension of $W$.

(The Ohio State University, Linear Algebra Midterm)
 
Read solution

LoadingAdd to solve later

Eigenvalues and Eigenvectors of The Cross Product Linear Transformation

Problem 593

We fix a nonzero vector $\mathbf{a}$ in $\R^3$ and define a map $T:\R^3\to \R^3$ by
\[T(\mathbf{v})=\mathbf{a}\times \mathbf{v}\] for all $\mathbf{v}\in \R^3$.
Here the right-hand side is the cross product of $\mathbf{a}$ and $\mathbf{v}$.

(a) Prove that $T:\R^3\to \R^3$ is a linear transformation.

(b) Determine the eigenvalues and eigenvectors of $T$.

 
Read solution

LoadingAdd to solve later

An Orthogonal Transformation from $\R^n$ to $\R^n$ is an Isomorphism

Problem 592

Let $\R^n$ be an inner product space with inner product $\langle \mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\trans}\mathbf{y}$ for $\mathbf{x}, \mathbf{y}\in \R^n$.

A linear transformation $T:\R^n \to \R^n$ is called orthogonal transformation if for all $\mathbf{x}, \mathbf{y}\in \R^n$, it satisfies
\[\langle T(\mathbf{x}), T(\mathbf{y})\rangle=\langle\mathbf{x}, \mathbf{y} \rangle.\]

Prove that if $T:\R^n\to \R^n$ is an orthogonal transformation, then $T$ is an isomorphism.

 
Read solution

LoadingAdd to solve later

Exponential Functions Form a Basis of a Vector Space

Problem 590

Let $C[-1, 1]$ be the vector space over $\R$ of all continuous functions defined on the interval $[-1, 1]$. Let
\[V:=\{f(x)\in C[-1,1] \mid f(x)=a e^x+b e^{2x}+c e^{3x}, a, b, c\in \R\}\] be a subset in $C[-1, 1]$.

(a) Prove that $V$ is a subspace of $C[-1, 1]$.

(b) Prove that the set $B=\{e^x, e^{2x}, e^{3x}\}$ is a basis of $V$.

(c) Prove that
\[B’=\{e^x-2e^{3x}, e^x+e^{2x}+2e^{3x}, 3e^{2x}+e^{3x}\}\] is a basis for $V$.

 
Read solution

LoadingAdd to solve later

Use Coordinate Vectors to Show a Set is a Basis for the Vector Space of Polynomials of Degree 2 or Less

Problem 588

Let $P_2$ be the vector space over $\R$ of all polynomials of degree $2$ or less.
Let $S=\{p_1(x), p_2(x), p_3(x)\}$, where
\[p_1(x)=x^2+1, \quad p_2(x)=6x^2+x+2, \quad p_3(x)=3x^2+x.\]

(a) Use the basis $B=\{x^2, x, 1\}$ of $P_2$ to prove that the set $S$ is a basis for $P_2$.

(b) Find the coordinate vector of $p(x)=x^2+2x+3\in P_2$ with respect to the basis $S$.

 
Read solution

LoadingAdd to solve later

Diagonalize the $2\times 2$ Hermitian Matrix by a Unitary Matrix

Problem 585

Consider the Hermitian matrix
\[A=\begin{bmatrix}
1 & i\\
-i& 1
\end{bmatrix}.\]

(a) Find the eigenvalues of $A$.

(b) For each eigenvalue of $A$, find the eigenvectors.

(c) Diagonalize the Hermitian matrix $A$ by a unitary matrix. Namely, find a diagonal matrix $D$ and a unitary matrix $U$ such that $U^{-1}AU=D$.

 
Read solution

LoadingAdd to solve later

Diagonalize the Upper Triangular Matrix and Find the Power of the Matrix

Problem 583

Consider the $2\times 2$ complex matrix
\[A=\begin{bmatrix}
a & b-a\\
0& b
\end{bmatrix}.\]

(a) Find the eigenvalues of $A$.

(b) For each eigenvalue of $A$, determine the eigenvectors.

(c) Diagonalize the matrix $A$.

(d) Using the result of the diagonalization, compute and simplify $A^k$ for each positive integer $k$.

 
Read solution

LoadingAdd to solve later