Boolean Rings Do Not Have Nonzero Nilpotent Elements
Problem 618
Let $R$ be a commutative ring with $1$ such that every element $x$ in $R$ is idempotent, that is, $x^2=x$. (Such a ring is called a Boolean ring.)
(a) Prove that $x^n=x$ for any positive integer $n$.
(b) Prove that $R$ does not have a nonzero nilpotent element.

If the Localization is Noetherian for All Prime Ideals, Is the Ring Noetherian?
Problem 617
Let $R$ be a commutative ring with $1$.
Suppose that the localization $R_{\mathfrak{p}}$ is a Noetherian ring for every prime ideal $\mathfrak{p}$ of $R$.
Is it true that $A$ is also a Noetherian ring?

The Set of Square Elements in the Multiplicative Group $(\Zmod{p})^*$
Problem 616
Suppose that $p$ is a prime number greater than $3$.
Consider the multiplicative group $G=(\Zmod{p})^*$ of order $p-1$.
(a) Prove that the set of squares $S=\{x^2\mid x\in G\}$ is a subgroup of the multiplicative group $G$.
(b) Determine the index $[G : S]$.
(c) Assume that $-1\notin S$. Then prove that for each $a\in G$ we have either $a\in S$ or $-a\in S$.

A Ring is Commutative if Whenever $ab=ca$, then $b=c$
Problem 615
Let $R$ be a ring and assume that whenever $ab=ca$ for some elements $a, b, c\in R$, we have $b=c$.
Then prove that $R$ is a commutative ring.

The Number of Elements Satisfying $g^5=e$ in a Finite Group is Odd
Problem 614
Let $G$ be a finite group. Let $S$ be the set of elements $g$ such that $g^5=e$, where $e$ is the identity element in the group $G$.
Prove that the number of elements in $S$ is odd.

Group Homomorphism from $\Z/n\Z$ to $\Z/m\Z$ When $m$ Divides $n$
Problem 613
Let $m$ and $n$ be positive integers such that $m \mid n$.
(a) Prove that the map $\phi:\Zmod{n} \to \Zmod{m}$ sending $a+n\Z$ to $a+m\Z$ for any $a\in \Z$ is well-defined.
(b) Prove that $\phi$ is a group homomorphism.
(c) Prove that $\phi$ is surjective.
(d) Determine the group structure of the kernel of $\phi$.

Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$
Problem 612
Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$.
(a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ is a basis for $W$.
(b) Prove that the set $\{\sin^2(x)-\cos^2(x), 1\}$ is a basis for $W$.

Is the Set of All Orthogonal Matrices a Vector Space?
Problem 611
An $n\times n$ matrix $A$ is called orthogonal if $A^{\trans}A=I$.
Let $V$ be the vector space of all real $2\times 2$ matrices.
Consider the subset
\[W:=\{A\in V \mid \text{$A$ is an orthogonal matrix}\}.\]
Prove or disprove that $W$ is a subspace of $V$.

Linear Transformation $T:\R^2 \to \R^2$ Given in Figure
Problem 610
Let $T:\R^2\to \R^2$ be a linear transformation such that it maps the vectors $\mathbf{v}_1, \mathbf{v}_2$ as indicated in the figure below.
Find the matrix representation $A$ of the linear transformation $T$.

Eigenvalues of $2\times 2$ Symmetric Matrices are Real by Considering Characteristic Polynomials
Problem 609
Let $A$ be a $2\times 2$ real symmetric matrix.
Prove that all the eigenvalues of $A$ are real numbers by considering the characteristic polynomial of $A$.

If Matrices Commute $AB=BA$, then They Share a Common Eigenvector
Problem 608
Let $A$ and $B$ be $n\times n$ matrices and assume that they commute: $AB=BA$.
Then prove that the matrices $A$ and $B$ share at least one common eigenvector.

Find a Basis of the Subspace Spanned by Four Polynomials of Degree 3 or Less
Problem 607
Let $\calP_3$ be the vector space of all polynomials of degree $3$ or less.
Let
\[S=\{p_1(x), p_2(x), p_3(x), p_4(x)\},\]
where
\begin{align*}
p_1(x)&=1+3x+2x^2-x^3 & p_2(x)&=x+x^3\\
p_3(x)&=x+x^2-x^3 & p_4(x)&=3+8x+8x^3.
\end{align*}
(a) Find a basis $Q$ of the span $\Span(S)$ consisting of polynomials in $S$.
(b) For each polynomial in $S$ that is not in $Q$, find the coordinate vector with respect to the basis $Q$.
(The Ohio State University, Linear Algebra Midterm)
Read solution

Determine the Dimension of a Mysterious Vector Space From Coordinate Vectors
Problem 606
Let $V$ be a vector space and $B$ be a basis for $V$.
Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ be vectors in $V$.
Suppose that $A$ is the matrix whose columns are the coordinate vectors of $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ with respect to the basis $B$.
After applying the elementary row operations to $A$, we obtain the following matrix in reduced row echelon form
\[\begin{bmatrix}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}.\]
(a) What is the dimension of $V$?
(b) What is the dimension of $\Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5\}$?
(The Ohio State University, Linear Algebra Midterm)
Read solution

Matrix Representation, Rank, and Nullity of a Linear Transformation $T:\R^2\to \R^3$
Problem 605
Let $T:\R^2 \to \R^3$ be a linear transformation such that
\[T\left(\, \begin{bmatrix}
3 \\
2
\end{bmatrix} \,\right)
=\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} \text{ and }
T\left(\, \begin{bmatrix}
4\\
3
\end{bmatrix} \,\right)
=\begin{bmatrix}
0 \\
-5 \\
1
\end{bmatrix}.\]
(a) Find the matrix representation of $T$ (with respect to the standard basis for $\R^2$).
(b) Determine the rank and nullity of $T$.
(The Ohio State University, Linear Algebra Midterm)
Read solution

Find Bases for the Null Space, Range, and the Row Space of a $5\times 4$ Matrix
Problem 604
Let
\[A=\begin{bmatrix}
1 & -1 & 0 & 0 \\
0 &1 & 1 & 1 \\
1 & -1 & 0 & 0 \\
0 & 2 & 2 & 2\\
0 & 0 & 0 & 0
\end{bmatrix}.\]
(a) Find a basis for the null space $\calN(A)$.
(b) Find a basis of the range $\calR(A)$.
(c) Find a basis of the row space for $A$.
(The Ohio State University, Linear Algebra Midterm)
Read solution

Are the Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$ Linearly Independent?
Problem 603
Let $C[-2\pi, 2\pi]$ be the vector space of all continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the functions \[f(x)=\sin^2(x) \text{ and } g(x)=\cos^2(x)\]
in $C[-2\pi, 2\pi]$.
Prove or disprove that the functions $f(x)$ and $g(x)$ are linearly independent.
(The Ohio State University, Linear Algebra Midterm)
Read solution

Find an Orthonormal Basis of the Given Two Dimensional Vector Space
Problem 602
Let $W$ be a subspace of $\R^4$ with a basis
\[\left\{\, \begin{bmatrix}
1 \\
0 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
0 \\
1 \\
1 \\
1
\end{bmatrix} \,\right\}.\]
Find an orthonormal basis of $W$.
(The Ohio State University, Linear Algebra Midterm)
Read solution

Vector Space of 2 by 2 Traceless Matrices
Problem 601
Let $V$ be the vector space of all $2\times 2$ matrices whose entries are real numbers.
Let
\[W=\left\{\, A\in V \quad \middle | \quad A=\begin{bmatrix}
a & b\\
c& -a
\end{bmatrix} \text{ for any } a, b, c\in \R \,\right\}.\]
(a) Show that $W$ is a subspace of $V$.
(b) Find a basis of $W$.
(c) Find the dimension of $W$.
(The Ohio State University, Linear Algebra Midterm)
Read solution

Find an Orthonormal Basis of $\R^3$ Containing a Given Vector
Problem 600
Let $\mathbf{v}_1=\begin{bmatrix}
2/3 \\ 2/3 \\ 1/3
\end{bmatrix}$ be a vector in $\R^3$.
Find an orthonormal basis for $\R^3$ containing the vector $\mathbf{v}_1$.
