ring-theory-eye-catch
by Yu · Published · Updated


More from my site
The Intersection of Two Subspaces is also a Subspace Let $U$ and $V$ be subspaces of the $n$-dimensional vector space $\R^n$. Prove that the intersection $U\cap V$ is also a subspace of $\R^n$. Definition (Intersection). Recall that the intersection $U\cap V$ is the set of elements that are both elements of $U$ […]
Linear Properties of Matrix Multiplication and the Null Space of a Matrix Let $A$ be an $m \times n$ matrix. Let $\calN(A)$ be the null space of $A$. Suppose that $\mathbf{u} \in \calN(A)$ and $\mathbf{v} \in \calN(A)$. Let $\mathbf{w}=3\mathbf{u}-5\mathbf{v}$. Then find $A\mathbf{w}$. Hint. Recall that the null space of an […]
A Homomorphism from the Additive Group of Integers to Itself Let $\Z$ be the additive group of integers. Let $f: \Z \to \Z$ be a group homomorphism. Then show that there exists an integer $a$ such that \[f(n)=an\] for any integer $n$. Hint. Let us first recall the definition of a group homomorphism. A group homomorphism from a […]
Find All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular. Hint. Use the fact that a matrix is singular if and only […]
Quiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null Space (a) Let $A=\begin{bmatrix} 1 & 2 & 1 \\ 3 &6 &4 \end{bmatrix}$ and let \[\mathbf{a}=\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix} 1 \\ 1 […]
If Eigenvalues of a Matrix $A$ are Less than $1$, then Determinant of $I-A$ is Positive Let $A$ be an $n \times n$ matrix. Suppose that all the eigenvalues $\lambda$ of $A$ are real and satisfy $\lambda <1$. Then show that the determinant \[ \det(I-A) >0,\] where $I$ is the $n \times n$ identity matrix. We give two solutions. Solution 1. Let […]
A Symmetric Positive Definite Matrix and An Inner Product on a Vector Space (a) Suppose that $A$ is an $n\times n$ real symmetric positive definite matrix. Prove that \[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans}A\mathbf{y}\] defines an inner product on the vector space $\R^n$. (b) Let $A$ be an $n\times n$ real matrix. Suppose […]
Image of a Normal Subgroup Under a Surjective Homomorphism is a Normal Subgroup Let $f: H \to G$ be a surjective group homomorphism from a group $H$ to a group $G$. Let $N$ be a normal subgroup of $H$. Show that the image $f(N)$ is normal in $G$. Proof. To show that $f(N)$ is normal, we show that $gf(N)g^{-1}=f(N)$ for any $g \in […]