Positive definite Real Symmetric Matrix and its Eigenvalues

Linear algebra problems and solutions

Problem 396

A real symmetric $n \times n$ matrix $A$ is called positive definite if
\[\mathbf{x}^{\trans}A\mathbf{x}>0\] for all nonzero vectors $\mathbf{x}$ in $\R^n$.

(a) Prove that the eigenvalues of a real symmetric positive-definite matrix $A$ are all positive.

(b) Prove that if eigenvalues of a real symmetric matrix $A$ are all positive, then $A$ is positive-definite.

LoadingAdd to solve later

Sponsored Links

Proof.

(a) Prove that the eigenvalues of a real symmetric positive-definite matrix $A$ are all positive.

Recall that the eigenvalues of a real symmetric matrix are real.
(See the corollary in the post “Eigenvalues of a Hermitian matrix are real numbers“.)

Let $\lambda$ be a (real) eigenvalue of $A$ and let $\mathbf{x}$ be a corresponding real eigenvector. That is, we have
\[A\mathbf{x}=\lambda \mathbf{x}.\] Then we multiply by $\mathbf{x}^{\trans}$ on left and obtain
\begin{align*}
\mathbf{x}^{\trans}A\mathbf{x}&=\lambda \mathbf{x}^{\trans} \mathbf{x}\\
&=\lambda ||\mathbf{x}||^2.
\end{align*}

The left hand side is positive as $A$ is positive definite and $\mathbf{x}$ is a nonzero vector as it is an eigenvector.
Since the length $||\mathbf{x}||^2$ is positive, we must have $\lambda$ is positive.
It follows that every eigenvalue $\lambda$ of $A$ is real.

(b) Prove that if eigenvalues of a real symmetric matrix $A$ are all positive, then $A$ is positive-definite.

Note that a real symmetric matrix is diagonalizable by an orthogonal matrix.

So there exists an on orthogonal matrix $Q$ such that $Q^{\trans}AQ=D$, where $D$ is the diagonal matrix
\[D=\begin{bmatrix}
\lambda_1 & 0 & 0 & 0 \\
0 &\lambda_2 & 0 & 0 \\
\vdots & \cdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{bmatrix}\] whose diagonal entries $\lambda_i$ are eigenvalues of $A$, which are positive by assumption.

Let $\mathbf{x}$ be an arbitrary nonzero vector in $\R^n$.
Since $A=QDQ^{\trans}$ (remark that $Q^{-1}=Q^{\trans}$), we have
\[\mathbf{x}^{\trans} A\mathbf{x}=\mathbf{x}^{\trans}QDQ^{\trans}\mathbf{x}.\] Putting $\mathbf{y}=Q^{\trans}\mathbf{x}$, we can rewrite the above equation as
\[\mathbf{x}^{\trans} A\mathbf{x}=\mathbf{y}^{\trans}D\mathbf{y}.\]

Let
\[\mathbf{y}=\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}.\] Then we have
\begin{align*}
&\mathbf{x}^{\trans} A\mathbf{x}=\mathbf{y}^{\trans}D\mathbf{y}\\
&=\begin{bmatrix}
y_1 & y_2 & \cdots & y_n
\end{bmatrix}
\begin{bmatrix}
\lambda_1 & 0 & 0 & 0 \\
0 &\lambda_2 & 0 & 0 \\
\vdots & \cdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}\\[6pt] &=\lambda_1y_1^2+\lambda_2 y_2^2+\cdots +\lambda_n y_n^2.
\end{align*}

By assumption eigenvalues $\lambda_i$ are positive.
Also, since $\mathbf{x}$ is a nonzero vector and $Q$ is invertible, $\mathbf{y}=Q^{\trans}\mathbf{x}$ is not a zero vector.
Thus the sum expression above is positive, hence $\mathbf{x}^{\trans} A\mathbf{x}$ is positive for any nonzero vector $\mathbf{x}$.
Therefore, the matrix $A$ is positive-definite.

Related Questions.

Problem. Let $A$ be an $n \times n$ real matrix. Prove the followings.

(a) The matrix $AA^{\trans}$ is a symmetric matrix.

(b) The set of eigenvalues of $A$ and the set of eigenvalues of $A^{\trans}$ are equal.

(c) The matrix $AA^{\trans}$ is non-negative definite.
(An $n\times n$ matrix $B$ is called non-negative definite if for any $n$ dimensional vector $\mathbf{x}$, we have $\mathbf{x}^{\trans}B \mathbf{x} \geq 0$.)

(d) All the eigenvalues of $AA^{\trans}$ is non-negative.

For a solution, see the post “Transpose of a matrix and eigenvalues and related questions.“.

Problem. Suppose $A$ is a positive definite symmetric $n\times n$ matrix.

(a) Prove that $A$ is invertible.

(b) Prove that $A^{-1}$ is symmetric.

(c) Prove that $A^{-1}$ is positive-definite.

For proofs, see the post “Inverse matrix of positive-definite symmetric matrix is positive-definite“.

Problem.
Prove that a positive definite matrix has a unique positive definite square root.

For a solution of this problem, see the post
A Positive Definite Matrix Has a Unique Positive Definite Square Root


LoadingAdd to solve later

Sponsored Links

More from my site

  • Inverse Matrix of Positive-Definite Symmetric Matrix is Positive-DefiniteInverse Matrix of Positive-Definite Symmetric Matrix is Positive-Definite Suppose $A$ is a positive definite symmetric $n\times n$ matrix. (a) Prove that $A$ is invertible. (b) Prove that $A^{-1}$ is symmetric. (c) Prove that $A^{-1}$ is positive-definite. (MIT, Linear Algebra Exam Problem)   Proof. (a) Prove that $A$ is […]
  • Transpose of a Matrix and Eigenvalues and Related QuestionsTranspose of a Matrix and Eigenvalues and Related Questions Let $A$ be an $n \times n$ real matrix. Prove the followings. (a) The matrix $AA^{\trans}$ is a symmetric matrix. (b) The set of eigenvalues of $A$ and the set of eigenvalues of $A^{\trans}$ are equal. (c) The matrix $AA^{\trans}$ is non-negative definite. (An $n\times n$ […]
  • Eigenvalues of a Hermitian Matrix are Real NumbersEigenvalues of a Hermitian Matrix are Real Numbers Show that eigenvalues of a Hermitian matrix $A$ are real numbers. (The Ohio State University Linear Algebra Exam Problem)   We give two proofs. These two proofs are essentially the same. The second proof is a bit simpler and concise compared to the first one. […]
  • Eigenvalues of $2\times 2$ Symmetric Matrices are Real by Considering Characteristic PolynomialsEigenvalues of $2\times 2$ Symmetric Matrices are Real by Considering Characteristic Polynomials Let $A$ be a $2\times 2$ real symmetric matrix. Prove that all the eigenvalues of $A$ are real numbers by considering the characteristic polynomial of $A$.   Proof. Let $A=\begin{bmatrix} a& b \\ c& d \end{bmatrix}$. Then […]
  • Questions About the Trace of a MatrixQuestions About the Trace of a Matrix Let $A=(a_{i j})$ and $B=(b_{i j})$ be $n\times n$ real matrices for some $n \in \N$. Then answer the following questions about the trace of a matrix. (a) Express $\tr(AB^{\trans})$ in terms of the entries of the matrices $A$ and $B$. Here $B^{\trans}$ is the transpose matrix of […]
  • Sequence Converges to the Largest Eigenvalue of a MatrixSequence Converges to the Largest Eigenvalue of a Matrix Let $A$ be an $n\times n$ matrix. Suppose that $A$ has real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ with corresponding eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$. Furthermore, suppose that \[|\lambda_1| > |\lambda_2| \geq \cdots \geq […]
  • There is at Least One Real Eigenvalue of an Odd Real MatrixThere is at Least One Real Eigenvalue of an Odd Real Matrix Let $n$ be an odd integer and let $A$ be an $n\times n$ real matrix. Prove that the matrix $A$ has at least one real eigenvalue.   We give two proofs. Proof 1. Let $p(t)=\det(A-tI)$ be the characteristic polynomial of the matrix $A$. It is a degree $n$ […]
  • A Symmetric Positive Definite Matrix and An Inner Product on a Vector SpaceA Symmetric Positive Definite Matrix and An Inner Product on a Vector Space (a) Suppose that $A$ is an $n\times n$ real symmetric positive definite matrix. Prove that \[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans}A\mathbf{y}\] defines an inner product on the vector space $\R^n$. (b) Let $A$ be an $n\times n$ real matrix. Suppose […]

You may also like...

2 Responses

  1. 04/30/2017

    […] For a solution, see the post “Positive definite real symmetric matrix and its eigenvalues“. […]

  2. 05/01/2017

    […] Recall that a symmetric matrix is positive-definite if and only if its eigenvalues are all positive. […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Stanford University Linear Algebra Exam Problems and Solutions
If Two Vectors Satisfy $A\mathbf{x}=0$ then Find Another Solution

Suppose that the vectors \[\mathbf{v}_1=\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix} -4 \\ 0...

Close