The sample space $S$ is the set of all pairs $(i, j)$ with $1 \leq i, j \leq 6$, where $i$ and $j$ are the numbers corresponding to the first and the second die respectively. Hence $|S| = 36$. All of the $36$ possible outcomes are equally likely.

Solution (1)

Now we consider the outcomes that give rise to the event that the sum of the upturned faces is $5$. There are four such outcomes:
\[(1, 4), (2, 3), (3, 2), (4, 1).\]
Thus, the desired probability is $\frac{4}{36}=\frac{1}{9}$.

Solution (2)

The outcomes that give rise to this event are $(i, j)$ with $i < j$, where $i$ and $j$ are the numbers corresponding to the first and second die respectively.
We count the number of such outcomes as follows.
When $i=1$, possible values for $j$ are $j=2, 3, 4, 5, 6$. When $i=2$, possible values for $j$ are $j = 3, 4, 5, 6$.
In general, $j$ can be $j = i+1, i+2, \dots, 6$. Note that $i$ cannot be $6$, otherwise $j$ is not strictly greater than $i$.
Counting this way, we see that there are
\[5+4+3+2+1 = 15\]
outcomes, each of probability $1/36$.
Hence the probability that the outcomes of the second die is strictly greater than the first die is
\[15 \times \frac{1}{36} = \frac{15}{36} = \frac{5}{12}.\]

Conditional Probability Problems about Die Rolling
A fair six-sided die is rolled.
(1) What is the conditional probability that the die lands on a prime number given the die lands on an odd number?
(2) What is the conditional probability that the die lands on 1 given the die lands on a prime number?
Solution.
Let $E$ […]

What is the Probability that All Coins Land Heads When Four Coins are Tossed If…?
Four fair coins are tossed.
(1) What is the probability that all coins land heads?
(2) What is the probability that all coins land heads if the first coin is heads?
(3) What is the probability that all coins land heads if at least one coin lands […]

Find the Conditional Probability About Math Exam Experiment
A researcher conducted the following experiment. Students were grouped into two groups. The students in the first group had more than 6 hours of sleep and took a math exam. The students in the second group had less than 6 hours of sleep and took the same math exam.
The pass […]

Complement of Independent Events are Independent
Let $E$ and $F$ be independent events. Let $F^c$ be the complement of $F$.
Prove that $E$ and $F^c$ are independent as well.
Solution.
Note that $E\cap F$ and $E \cap F^c$ are disjoint and $E = (E \cap F) \cup (E \cap F^c)$. It follows that
\[P(E) = P(E \cap F) + P(E […]

If a Smartphone is Defective, Which Factory Made It?
A certain model of smartphone is manufactured by three factories A, B, and C. Factories A, B, and C produce $60\%$, $25\%$, and $15\%$ of the smartphones, respectively. Suppose that their defective rates are $5\%$, $2\%$, and $7\%$, respectively.
If a smartphone of this model is […]

Overall Fraction of Defective Smartphones of Three Factories
A certain model of smartphone is manufactured by three factories A, B, and C. Factories A, B, and C produce $60\%$, $25\%$, and $15\%$ of the smartphones, respectively.
Suppose that their defective rates are $5\%$, $2\%$, and $7\%$, respectively. Determine the overall fraction of […]

Probability of Having Lung Cancer For Smokers
Let $C$ be the event that a randomly chosen person has lung cancer. Let $S$ be the event of a person being a smoker.
Suppose that 10% of the population has lung cancer and 20% of the population are smokers. Also, suppose that we know that 70% of all people who have lung cancer […]