Exponential Functions are Linearly Independent
Let $c_1, c_2,\dots, c_n$ be mutually distinct real numbers.
Show that exponential functions
\[e^{c_1x}, e^{c_2x}, \dots, e^{c_nx}\]
are linearly independent over $\R$.
Hint.
Consider a linear combination \[a_1 e^{c_1 x}+a_2 e^{c_2x}+\cdots + a_ne^{c_nx}=0.\]
[…]

Give a Formula for a Linear Transformation if the Values on Basis Vectors are Known
Let $T: \R^2 \to \R^2$ be a linear transformation.
Let
\[
\mathbf{u}=\begin{bmatrix}
1 \\
2
\end{bmatrix}, \mathbf{v}=\begin{bmatrix}
3 \\
5
\end{bmatrix}\]
be 2-dimensional vectors.
Suppose that
\begin{align*}
T(\mathbf{u})&=T\left( \begin{bmatrix}
1 \\
[…]

Find All the Square Roots of a Given 2 by 2 Matrix
Let $A$ be a square matrix. A matrix $B$ satisfying $B^2=A$ is call a square root of $A$.
Find all the square roots of the matrix
\[A=\begin{bmatrix}
2 & 2\\
2& 2
\end{bmatrix}.\]
Proof.
Diagonalize $A$.
We first diagonalize the matrix […]

In which $\R^k$, are the Nullspace and Range Subspaces?
Let $A$ be an $m \times n$ matrix.
Suppose that the nullspace of $A$ is a plane in $\R^3$ and the range is spanned by a nonzero vector $\mathbf{v}$ in $\R^5$. Determine $m$ and $n$. Also, find the rank and nullity of $A$.
Solution.
For an $m \times n$ matrix $A$, the […]

Linear Transformation and a Basis of the Vector Space $\R^3$
Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$.
Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$.
Show […]

Compute Power of Matrix If Eigenvalues and Eigenvectors Are Given
Let $A$ be a $3\times 3$ matrix. Suppose that $A$ has eigenvalues $2$ and $-1$, and suppose that $\mathbf{u}$ and $\mathbf{v}$ are eigenvectors corresponding to $2$ and $-1$, respectively, where
\[\mathbf{u}=\begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix} \text{ […]

Find a Basis of the Subspace Spanned by Four Polynomials of Degree 3 or Less
Let $\calP_3$ be the vector space of all polynomials of degree $3$ or less.
Let
\[S=\{p_1(x), p_2(x), p_3(x), p_4(x)\},\]
where
\begin{align*}
p_1(x)&=1+3x+2x^2-x^3 & p_2(x)&=x+x^3\\
p_3(x)&=x+x^2-x^3 & p_4(x)&=3+8x+8x^3.
\end{align*}
(a) […]

The Number of Elements Satisfying $g^5=e$ in a Finite Group is Odd
Let $G$ be a finite group. Let $S$ be the set of elements $g$ such that $g^5=e$, where $e$ is the identity element in the group $G$.
Prove that the number of elements in $S$ is odd.
Proof.
Let $g\neq e$ be an element in the group $G$ such that $g^5=e$.
As […]