# Johns-Hopkins-University-exam-eye-catch

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Find All the Eigenvalues and Eigenvectors of the 6 by 6 Matrix Find all the eigenvalues and eigenvectors of the matrix \[A=\begin{bmatrix} 10001 & 3 & 5 & 7 &9 & 11 \\ 1 & 10003 & 5 & 7 & 9 & 11 \\ 1 & 3 & 10005 & 7 & 9 & 11 \\ 1 & 3 & 5 & 10007 & 9 & 11 \\ 1 &3 & 5 & 7 & 10009 & 11 \\ 1 &3 & 5 & 7 & 9 & […]
- A Matrix Having One Positive Eigenvalue and One Negative Eigenvalue Prove that the matrix \[A=\begin{bmatrix} 1 & 1.00001 & 1 \\ 1.00001 &1 &1.00001 \\ 1 & 1.00001 & 1 \end{bmatrix}\] has one positive eigenvalue and one negative eigenvalue. (University of California, Berkeley Qualifying Exam Problem) Solution. Let us put […]
- Diagonalizable Matrix with Eigenvalue 1, -1 Suppose that $A$ is a diagonalizable $n\times n$ matrix and has only $1$ and $-1$ as eigenvalues. Show that $A^2=I_n$, where $I_n$ is the $n\times n$ identity matrix. (Stanford University Linear Algebra Exam) See below for a generalized problem. Hint. Diagonalize the […]
- Using Properties of Inverse Matrices, Simplify the Expression Let $A, B, C$ be $n\times n$ invertible matrices. When you simplify the expression \[C^{-1}(AB^{-1})^{-1}(CA^{-1})^{-1}C^2,\] which matrix do you get? (a) $A$ (b) $C^{-1}A^{-1}BC^{-1}AC^2$ (c) $B$ (d) $C^2$ (e) $C^{-1}BC$ (f) $C$ Solution. In this problem, we […]
- Is the Derivative Linear Transformation Diagonalizable? Let $\mathrm{P}_2$ denote the vector space of polynomials of degree $2$ or less, and let $T : \mathrm{P}_2 \rightarrow \mathrm{P}_2$ be the derivative linear transformation, defined by \[ T( ax^2 + bx + c ) = 2ax + b . \] Is $T$ diagonalizable? If so, find a diagonal matrix which […]
- If the Kernel of a Matrix $A$ is Trivial, then $A^T A$ is Invertible Let $A$ be an $m \times n$ real matrix. Then the kernel of $A$ is defined as $\ker(A)=\{ x\in \R^n \mid Ax=0 \}$. The kernel is also called the null space of $A$. Suppose that $A$ is an $m \times n$ real matrix such that $\ker(A)=0$. Prove that $A^{\trans}A$ is […]
- Is the Quotient Ring of an Integral Domain still an Integral Domain? Let $R$ be an integral domain and let $I$ be an ideal of $R$. Is the quotient ring $R/I$ an integral domain? Definition (Integral Domain). Let $R$ be a commutative ring. An element $a$ in $R$ is called a zero divisor if there exists $b\neq 0$ in $R$ such that […]
- Abelian Normal Subgroup, Intersection, and Product of Groups Let $G$ be a group and let $A$ be an abelian subgroup of $G$ with $A \triangleleft G$. (That is, $A$ is a normal subgroup of $G$.) If $B$ is any subgroup of $G$, then show that \[A \cap B \triangleleft AB.\] Proof. First of all, since $A \triangleleft G$, the […]