Prove $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$ and determine those $\mathbf{x}$ such that $\mathbf{x}^{\trans}A\mathbf{x}=0$

Problems and solutions in Linear Algebra

Problem 559

For each of the following matrix $A$, prove that $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$ for all vectors $\mathbf{x}$ in $\R^2$. Also, determine those vectors $\mathbf{x}\in \R^2$ such that $\mathbf{x}^{\trans}A\mathbf{x}=0$.

(a) $A=\begin{bmatrix}
4 & 2\\
2& 1
\end{bmatrix}$.

 
(b) $A=\begin{bmatrix}
2 & 1\\
1& 3
\end{bmatrix}$.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) $A=\begin{bmatrix}
4 & 2\\
2& 1
\end{bmatrix}$.

Let $\mathbf{x}=\begin{bmatrix}
x \\
y
\end{bmatrix}$ be a vector in $\R^2$. Then we have
\begin{align*}
\mathbf{x}^{\trans}A\mathbf{x}&=\begin{bmatrix}
x & y
\end{bmatrix}\begin{bmatrix}
4 & 2\\
2& 1
\end{bmatrix}\begin{bmatrix}
x \\
y
\end{bmatrix}=\begin{bmatrix}
x & y
\end{bmatrix}\begin{bmatrix}
4x+2y \\
2x+y
\end{bmatrix}\\[6pt] &=x(4x+2y)+y(2x+y)=4x^2+2xy+2xy+y^2\\
&=4x^2+4xy+y^2\\
&=(2x+y)^2 \geq 0.
\end{align*}
Thus we have $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$.
Note that $\mathbf{x}^{\trans}A\mathbf{x}=0$ if and only if $2x+y=0$.
Thus those vectors $\mathbf{x}$ such that $\mathbf{x}^{\trans}A\mathbf{x}=0$ are
\[\mathbf{x}=\begin{bmatrix}
x \\
-2x
\end{bmatrix}=x\begin{bmatrix}
1 \\
-2
\end{bmatrix}\] for any real number $x$.

(b) $A=\begin{bmatrix}
2 & 1\\
1& 3
\end{bmatrix}$.

Let $\mathbf{x}=\begin{bmatrix}
x \\
y
\end{bmatrix}$ be a vector in $\R^2$.
We compute
\begin{align*}
\mathbf{x}^{\trans}A\mathbf{x}&=\begin{bmatrix}
x & y
\end{bmatrix}
\begin{bmatrix}
2 & 1\\
1& 3
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}=
\begin{bmatrix}
x & y
\end{bmatrix}
\begin{bmatrix}
2x+y \\
x+3y
\end{bmatrix}\\[6pt] &=x(2x+y)+y(x+3y)=2x^2+xy+xy+3y^2\\
&=2x^2+2xy+3y^2\\
&=x^2+(x+y)^2+2y^2 \geq 0. \tag{*}
\end{align*}
Thus we obtain $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$.
It follows from (*) that $\mathbf{x}^{\trans}A\mathbf{x}=0$ if and only if
\[x^2+(x+y)^2+2y^2=0.\] Since each of $x^2, (x+y)^2, 2y^2$ is nonnegative, we must have $x=y=0$.
Therefore $\mathbf{x}^{\trans}A\mathbf{x}=0$ if and only if $\mathbf{x}=\mathbf{0}$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
The Transpose of a Nonsingular Matrix is Nonsingular

Let $A$ be an $n\times n$ nonsingular matrix. Prove that the transpose matrix $A^{\trans}$ is also nonsingular.  

Close