Prove that $\{ 1 , 1 + x , (1 + x)^2 \}$ is a Basis for the Vector Space of Polynomials of Degree $2$ or Less

Vector Space Problems and Solutions

Problem 665

Let $\mathbf{P}_2$ be the vector space of polynomials of degree $2$ or less.

(a) Prove that the set $\{ 1 , 1 + x , (1 + x)^2 \}$ is a basis for $\mathbf{P}_2$.

(b) Write the polynomial $f(x) = 2 + 3x – x^2$ as a linear combination of the basis $\{ 1 , 1+x , (1+x)^2 \}$.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Prove that the set $\{ 1 , 1 + x , (1 + x)^2 \}$ is a basis for $\mathbf{P}_2$.

Consider the standard basis $\mathfrak{B} = \{ 1 , x , x^2 \}$ of $\mathbf{P}_2$. Using this basis, we can write the elements using coordinate vectors as
\[ [1]_{\mathfrak{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad [1+x]_{\mathfrak{B}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad [(1+x)^2]_{\mathfrak{B}} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.\] We find the coordinate vector by writing an element as a linear combination of the basis elements. For example, $(1+x)^2 = 1 + 2x + 1 x^2$, and so the coefficients $1, 2, 1$ translate into the column vector $ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.


Because $\dim \mathbf{P}_2 = 3$, this set is a basis if and only if these three vectors are linearly independent. To verify this, consider the matrix
\[\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.\]

This matrix is upper-triangular, and the diagonal entries are all non-zero. This implies the matrix is non-singular, and so the columns are linearly independent.

Thus, the set $\{ 1 , 1+x , (1+x)^2 \}$ is a basis of $\mathbf{P}_2$.

(b) Write the polynomial $f(x) = 2 + 3x – x^2$ as a linear combination of the basis $\{ 1 , 1+x , (1+x)^2 \}$.

First Method: Using the technique of completing the square, we can factor the polynomial $f(x)$ as we like. Specifically,
\begin{align*}
f(x) &= -x^2 + 3x + 2 \\
&= – (x+1)^2 + 5x + 3 \\
&= – (x+1)^2 + 5(x+1) – 2.
\end{align*}

Hence, we have the linear combination
\[f(x)= -2\cdot 1 +5(1+x) -(1+x)^2. \tag{*}\]


Second Method: We can find this factorization by calculating the Taylor polynomial of $f(x)$ centered at $-1$.

This Taylor polynomial is defined by
\[f(x) = f(-1) + f'(-1) (x+1) + \frac{ f”(-1)}{2} (x+1)^2.\] The polynomial in (*) is recovered by finding $f(-1) = -2$, $f'(-1) = 5$, and $f^{\prime \prime}(-1) = -2$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
For Fixed Matrices $R, S$, the Matrices $RAS$ form a Subspace

Let $V$ be the vector space of $k \times k$ matrices. Then for fixed matrices $R, S \in V$, define...

Close