# Prove the Cauchy-Schwarz Inequality

## Problem 355

Let $\mathbf{a}, \mathbf{b}$ be vectors in $\R^n$.

Prove the Cauchy-Schwarz inequality:
$|\mathbf{a}\cdot \mathbf{b}|\leq \|\mathbf{a}\|\,\|\mathbf{b}\|.$

Contents

We give two proofs.

## Proof 1

Let $x$ be a variable and consider the length of the vector $\mathbf{a}-x\mathbf{b}$ as follows.

We have
\begin{align*}
0& \leq \|\mathbf{a}-x\mathbf{b}\|^2=(\mathbf{a}-x\mathbf{b})\cdot (\mathbf{a}-x\mathbf{b})\\
&=\mathbf{a}\cdot \mathbf{a}-\mathbf{a}\cdot x\mathbf{b}-x\mathbf{a}\cdot \mathbf{b}+x^2\mathbf{b}\cdot \mathbf{b}\\
&=\|\mathbf{b}\|^2 x^2-2\mathbf{a}\cdot \mathbf{b}x+\|\mathbf{a}\|^2. \tag{*}
\end{align*}

Note that the last expression is an equation of a parabola (quadratic equation).
Since the parabola is always non-negative, its discriminant $D$ must be non-positive.

Hence we have
$D=(2\mathbf{a}\cdot \mathbf{b})^2-4\|\mathbf{a}\|^2 \|\mathbf{b}\|^2 \leq 0.$

It follows that we have
$(\mathbf{a}\cdot \mathbf{b})^2 \leq \|\mathbf{a}\|^2 \|\mathbf{b}\|^2 .$ Taking the square root, we obtain the Cauchy-Schwarz inequality
$|\mathbf{a}\cdot \mathbf{b}|\leq \|\mathbf{a}\|\,\|\mathbf{b}\|.$

## Proof 2

The second proof starts with the same argument as the first proof.
As in Proof 1 (*), we obtain
$0\leq \|\mathbf{b}\|^2 x^2-2\mathbf{a}\cdot \mathbf{b}x+\|\mathbf{a}\|^2.$

Now we take
$x=\frac{\mathbf{a}\cdot \mathbf{b}}{\|\mathbf{b}\|^2}.$ Then we have
\begin{align*}
0 &\leq \|\mathbf{b}\|^2 \left(\,\frac{\mathbf{a}\cdot \mathbf{b}}{\|\mathbf{b}\|^2} \,\right)^2-2\mathbf{a}\cdot \mathbf{b}\left(\, \frac{\mathbf{a}\cdot \mathbf{b}}{\|\mathbf{b}\|^2} \,\right)+\|\mathbf{a}\|^2\6pt] &=\frac{(\mathbf{a}\cdot \mathbf{b})^2}{\|\mathbf{b}\|^2}-2\frac{(\mathbf{a}\cdot \mathbf{b})^2}{\|\mathbf{b}\|^2}+\|\mathbf{a}\|^2\\ &=-\frac{(\mathbf{a}\cdot \mathbf{b})^2}{\|\mathbf{b}\|^2}+\|\mathbf{a}\|^2. \end{align*} It follows that we have \[(\mathbf{a}\cdot \mathbf{b})^2\leq \|\mathbf{a}\|^2 \|\mathbf{b}\|^2. The Cauchy-Schwarz inequality is obtained by taking the square root as in Proof 1.

### More from my site

• Find the Distance Between Two Vectors if the Lengths and the Dot Product are Given Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are $\|\mathbf{a}\|=\|\mathbf{b}\|=1$ and the inner product $\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.$ Then determine the length $\|\mathbf{a}-\mathbf{b}\|$. (Note […]
• Inner Products, Lengths, and Distances of 3-Dimensional Real Vectors For this problem, use the real vectors $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} , \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} , \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} .$ Suppose that $\mathbf{v}_4$ is another vector which is […]
• Find the Inverse Matrix of a Matrix With Fractions Find the inverse matrix of the matrix $A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.$   Hint. You may use the augmented matrix […]
• Inner Product, Norm, and Orthogonal Vectors Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in […]
• Eigenvalues of Orthogonal Matrices Have Length 1. Every $3\times 3$ Orthogonal Matrix Has 1 as an Eigenvalue (a) Let $A$ be a real orthogonal $n\times n$ matrix. Prove that the length (magnitude) of each eigenvalue of $A$ is $1$. (b) Let $A$ be a real orthogonal $3\times 3$ matrix and suppose that the determinant of $A$ is $1$. Then prove that $A$ has $1$ as an […]
• Eigenvalues of a Hermitian Matrix are Real Numbers Show that eigenvalues of a Hermitian matrix $A$ are real numbers. (The Ohio State University Linear Algebra Exam Problem)   We give two proofs. These two proofs are essentially the same. The second proof is a bit simpler and concise compared to the first one. […]
• Equivalent Conditions to be a Unitary Matrix A complex matrix is called unitary if $\overline{A}^{\trans} A=I$. The inner product $(\mathbf{x}, \mathbf{y})$ of complex vector $\mathbf{x}$, $\mathbf{y}$ is defined by $(\mathbf{x}, \mathbf{y}):=\overline{\mathbf{x}}^{\trans} \mathbf{y}$. The length of a complex vector […]
• Normalize Lengths to Obtain an Orthonormal Basis Let $\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} ,\; \mathbf{v}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} .$ Let $V=\Span(\mathbf{v}_{1},\mathbf{v}_{2})$. Do $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ form an orthonormal basis for $V$? If […]

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### Find a General Formula of a Linear Transformation From $\R^2$ to $\R^3$

Suppose that $T: \R^2 \to \R^3$ is a linear transformation satisfying \[T\left(\, \begin{bmatrix} 1 \\ 2 \end{bmatrix}\,\right)=\begin{bmatrix} 3 \\ 4...

Close