# mmc%20rep%20of%20mcg

mmc%20rep%20of%20mcg

• Torsion Submodule, Integral Domain, and Zero Divisors Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$. The set of torsion elements is denoted $\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.$ (a) Prove that if $R$ is an […]
• Find the Rank of a Matrix with a Parameter Find the rank of the following real matrix. $\begin{bmatrix} a & 1 & 2 \\ 1 &1 &1 \\ -1 & 1 & 1-a \end{bmatrix},$ where $a$ is a real number.   (Kyoto University, Linear Algebra Exam) Solution. The rank is the number of nonzero rows of a […]
• Any Subgroup of Index 2 in a Finite Group is Normal Show that any subgroup of index $2$ in a group is a normal subgroup. Hint. Left (right) cosets partition the group into disjoint sets. Consider both left and right cosets. Proof. Let $H$ be a subgroup of index $2$ in a group $G$. Let $e \in G$ be the identity […]
• Row Equivalence of Matrices is Transitive If $A, B, C$ are three $m \times n$ matrices such that $A$ is row-equivalent to $B$ and $B$ is row-equivalent to $C$, then can we conclude that $A$ is row-equivalent to $C$? If so, then prove it. If not, then provide a counterexample.   Definition (Row […]
• Any Automorphism of the Field of Real Numbers Must be the Identity Map Prove that any field automorphism of the field of real numbers $\R$ must be the identity automorphism.   Proof. We prove the problem by proving the following sequence of claims. Let $\phi:\R \to \R$ be an automorphism of the field of real numbers […]
• Normal Subgroups, Isomorphic Quotients, But Not Isomorphic Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$. Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.   Proof. We give a […]
• If a Matrix is the Product of Two Matrices, is it Invertible? (a) Let $A$ be a $6\times 6$ matrix and suppose that $A$ can be written as $A=BC,$ where $B$ is a $6\times 5$ matrix and $C$ is a $5\times 6$ matrix. Prove that the matrix $A$ cannot be invertible. (b) Let $A$ be a $2\times 2$ matrix and suppose that $A$ can be […]
• If the Quotient by the Center is Cyclic, then the Group is Abelian Let $Z(G)$ be the center of a group $G$. Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian. Steps. Write $G/Z(G)=\langle \bar{g} \rangle$ for some $g \in G$. Any element $x\in G$ can be written as $x=g^a z$ for some $z \in Z(G)$ and $a \in \Z$. Using […]