# question-logo

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Find all Values of x such that the Given Matrix is Invertible Let \[ A=\begin{bmatrix} 2 & 0 & 10 \\ 0 &7+x &-3 \\ 0 & 4 & x \end{bmatrix}.\] Find all values of $x$ such that $A$ is invertible. (Stanford University Linear Algebra Exam) Hint. Calculate the determinant of the matrix $A$. Solution. A […]
- Every Diagonalizable Nilpotent Matrix is the Zero Matrix Prove that if $A$ is a diagonalizable nilpotent matrix, then $A$ is the zero matrix $O$. Definition (Nilpotent Matrix) A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$. Proof. Main Part Since $A$ is […]
- Are Groups of Order 100, 200 Simple? Determine whether a group $G$ of the following order is simple or not. (a) $|G|=100$. (b) $|G|=200$. Hint. Use Sylow's theorem and determine the number of $5$-Sylow subgroup of the group $G$. Check out the post Sylow’s Theorem (summary) for a review of Sylow's […]
- How to Calculate and Simplify a Matrix Polynomial Let $T=\begin{bmatrix} 1 & 0 & 2 \\ 0 &1 &1 \\ 0 & 0 & 2 \end{bmatrix}$. Calculate and simplify the expression \[-T^3+4T^2+5T-2I,\] where $I$ is the $3\times 3$ identity matrix. (The Ohio State University Linear Algebra Exam) Hint. Use the […]
- Find All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular. Hint. Use the fact that a matrix is singular if and only […]
- Taking the Third Order Taylor Polynomial is a Linear Transformation The space $C^{\infty} (\mathbb{R})$ is the vector space of real functions which are infinitely differentiable. Let $T : C^{\infty} (\mathbb{R}) \rightarrow \mathrm{P}_3$ be the map which takes $f \in C^{\infty}(\mathbb{R})$ to its third order Taylor polynomial, specifically defined […]
- Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$ Let $A$ be an $n\times n$ matrix. Its only eigenvalues are $1, 2, 3, 4, 5$, possibly with multiplicities. What is the nullity of the matrix $A+I_n$, where $I_n$ is the $n\times n$ identity matrix? (The Ohio State University, Linear Algebra Final Exam […]
- If $M, P$ are Nonsingular, then Exists a Matrix $N$ such that $MN=P$ Suppose that $M, P$ are two $n \times n$ non-singular matrix. Prove that there is a matrix $N$ such that $MN = P$. Proof. As non-singularity and invertibility are equivalent, we know that $M$ has the inverse matrix $M^{-1}$. Let us think backwards. Suppose that […]