Quiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null Space

Introduction to Linear Algebra at the Ohio State University quiz problems and solutions

Problem 313

(a) Let $A=\begin{bmatrix}
1 & 2 & 1 \\
3 &6 &4
\end{bmatrix}$ and let
\[\mathbf{a}=\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix}
1 \\
1
\end{bmatrix}.\] For each of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, determine whether the vector is in the null space $\calN(A)$. Do the same for the range $\calR(A)$.

(b) Find a basis of the null space of the matrix $B=\begin{bmatrix}
1 & 1 & 2 \\
-2 &-2 &-4
\end{bmatrix}$.

 
LoadingAdd to solve later

Sponsored Links


Solution of (a)

Let us first recall the definitions of the null space and range. The null space of the $2 \times 3$ matrix $A$ is defined by
\[\calN(A)=\{\mathbf{x}\in \R^3 \mid A\mathbf{x}=\mathbf{0}\}\] and the range of $A$ is defined by
\[\calR(A)=\{\mathbf{y} \in \R^2 \mid A\mathbf{x}=\mathbf{y} \text{ for some } \mathbf{x}\in \R^3\}.\] Note that the null space is a subspace of $\R^3$ and the range is a subspace of $\R^2$.

Consider first the vector $\mathbf{a}=\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}$. Since the vector $\mathbf{a}$ is three-dimensional, it cannot be in the range.
Also, since we have
\[A\mathbf{a}=\begin{bmatrix}
1 & 2 & 1 \\
3 &6 &4
\end{bmatrix}
\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}=\begin{bmatrix}
0 \\
1
\end{bmatrix}\neq \mathbf{0},\] the vector $\mathbf{a}$ is not in the null space of $A$.


Next, we consider the vector $\mathbf{b}=\begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}$. Again, this is three-dimensional vector, hence $\mathbf{b}$ is not in the range $\calR(A)$.
Since we have
\[A\mathbf{b}=\begin{bmatrix}
1 & 2 & 1 \\
3 &6 &4
\end{bmatrix}
\begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}
=\begin{bmatrix}
0 \\
0
\end{bmatrix}=\mathbf{0},\] we see that the vector $\mathbf{b}$ is in the null space $\calN(A)$.


Finally, we consider the vector $\mathbf{c}=\begin{bmatrix}
1 \\
1
\end{bmatrix}$. Since it is two-dimensional, the vector $\mathbf{c}$ is not in the null space $\calN(A)$.
Let us determine whether $\mathbf{c}$ is in the range $\calR(A)$. To do this, we check whether the system $A\mathbf{x}=\mathbf{c}$ is consistent or not. The augmented matrix of the system is
\[[A\mid \mathbf{c}]= \left[\begin{array}{rrr|r}
1 & 2 & 1 & 1 \\
3 & 6 & 4 & 1
\end{array} \right].\] Applying the elementary row operations, we have
\begin{align*}
\left[\begin{array}{rrr|r}
1 & 2 & 1 & 1 \\
3 & 6 & 4 & 1
\end{array} \right] \xrightarrow{R_2-3R_1}
\left[\begin{array}{rrr|r}
1 & 2 & 1 & 1 \\
0 & 0 & 1 & -2
\end{array} \right] \xrightarrow{R_1-R_2}
\left[\begin{array}{rrr|r}
1 & 2 & 0 & 3 \\
0 & 0 & 1 & -2
\end{array} \right] \end{align*}
and thus it has the general solution
\begin{align*}
x_1&=-2x_2+3\\
x_3&=-2.
\end{align*}
Therefore, the vector $\mathbf{c}$ is in the range $\calR(A)$.
(For example, if $\mathbf{x}_0=\begin{bmatrix}
1 \\
1 \\
-2
\end{bmatrix}$, then $A\mathbf{x}_0=\mathbf{c}$.)

In summary, the vector $\mathbf{a}$ is neither in $\calN(A)$ or in $\calR(A)$. The vector $\mathbf{b}$ is in $\calN(A)$ but not in $\calR(A)$. The vector $\mathbf{c}$ is not in $\calN(A)$ but in $\calR(A)$.

Solution of (b)

We first describe the null space $\calN(B)$ of the matrix $B$.
The vector $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$ is in the null space $\calN(B)$ if and only if $B\mathbf{x}=\mathbf{0}$.
The augmented matrix of $B\mathbf{x}=\mathbf{0}$ is
\[ \left[\begin{array}{rrr|r}
1 & 1 & 2 & 0 \\
-2 & -2 & -4 & 0
\end{array} \right].\] Applying the elementary row operations, we have
\begin{align*}
\left[\begin{array}{rrr|r}
1 & 1 & 2 & 0 \\
-2 & -2 & -4 & 0
\end{array} \right] \xrightarrow{R_2+2R_1}
\left[\begin{array}{rrr|r}
1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array} \right] \end{align*}
and the general solution is
\[x_1=-x_2-2x_3.\] Therefore, the vector $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$ is in the null space $\calN(B)$ if and only if $x_1=-x_2-2x_3$.
Thus,
\begin{align*}
\calN(B)&=\{\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}\in \R^3 \mid x_1=-x_2-2x_3\}\\
&=\{\mathbf{x}\in \R^3 \mid \mathbf{x}=\begin{bmatrix}
-x_2-2x_3 \\
x_2 \\
x_3
\end{bmatrix} \}\\
&=\{\mathbf{x}\in \R^3 \mid \mathbf{x}=x_2\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}+x_3\begin{bmatrix}
-2 \\
0 \\
1
\end{bmatrix}\}\\
&=\Span \left\{\, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-2 \\
0 \\
1
\end{bmatrix} \,\right\}.
\end{align*}
Thus, the set
\[S=\left\{\, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-2 \\
0 \\
1
\end{bmatrix} \, \right\}\] is a spanning set of the null space $\calN(B)$.
Let us verify that $S$ is a linearly independent set. Suppose that we have
\[c_1\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}+c_2\begin{bmatrix}
-2 \\
0 \\
1
\end{bmatrix}=\mathbf{0},\] for some scalars $c_1, c_2$. Then we have
\[\begin{bmatrix}
-c_1-2c_2 \\
c_1 \\
c_2
\end{bmatrix}=\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix},\] and thus $c_1=c_2=0$ and $S$ is linearly independent.
Hence $S$ is a linearly independent spanning set, and thus $S$ is a basis of the null space $\calN(B)$.

Comment.

These are Quiz 6 problems for Math 2568 (Introduction to Linear Algebra) at OSU in Spring 2017.

List of Quiz Problems of Linear Algebra (Math 2568) at OSU in Spring 2017

There were 13 weekly quizzes. Here is the list of links to the quiz problems and solutions.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Row Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a MatrixRow Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a Matrix Let \[A=\begin{bmatrix} 1 & 1 & 2 \\ 2 &2 &4 \\ 2 & 3 & 5 \end{bmatrix}.\] (a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$. (b) Find a basis for the null space of $A$. (c) Find a basis for the range of $A$ that […]
  • Quiz 7. Find a Basis of the Range, Rank, and Nullity of a MatrixQuiz 7. Find a Basis of the Range, Rank, and Nullity of a Matrix (a) Let $A=\begin{bmatrix} 1 & 3 & 0 & 0 \\ 1 &3 & 1 & 2 \\ 1 & 3 & 1 & 2 \end{bmatrix}$. Find a basis for the range $\calR(A)$ of $A$ that consists of columns of $A$. (b) Find the rank and nullity of the matrix $A$ in part (a).   Solution. (a) […]
  • A Matrix Representation of a Linear Transformation and Related SubspacesA Matrix Representation of a Linear Transformation and Related Subspaces Let $T:\R^4 \to \R^3$ be a linear transformation defined by \[ T\left (\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \,\right) = \begin{bmatrix} x_1+2x_2+3x_3-x_4 \\ 3x_1+5x_2+8x_3-2x_4 \\ x_1+x_2+2x_3 \end{bmatrix}.\] (a) Find a matrix $A$ such that […]
  • Given a Spanning Set of the Null Space of a Matrix, Find the RankGiven a Spanning Set of the Null Space of a Matrix, Find the Rank Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors \[\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 \\ -1 \\ 0 […]
  • Subspace Spanned By Cosine and Sine FunctionsSubspace Spanned By Cosine and Sine Functions Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$. Define the map $f:\R^2 \to \calF[0, 2\pi]$ by \[\left(\, f\left(\, \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta […]
  • Determine Null Spaces of Two MatricesDetermine Null Spaces of Two Matrices Let \[A=\begin{bmatrix} 1 & 2 & 2 \\ 2 &3 &2 \\ -1 & -3 & -4 \end{bmatrix} \text{ and } B=\begin{bmatrix} 1 & 2 & 2 \\ 2 &3 &2 \\ 5 & 3 & 3 \end{bmatrix}.\] Determine the null spaces of matrices $A$ and $B$.   Proof. The null space of the […]
  • Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a RelationQuiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation (a) Find the inverse matrix of \[A=\begin{bmatrix} 1 & 0 & 1 \\ 1 &0 &0 \\ 2 & 1 & 1 \end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason. (b) Find a nonsingular $2\times 2$ matrix $A$ such that \[A^3=A^2B-3A^2,\] where […]
  • Find a Basis For the Null Space of a Given $2\times 3$ MatrixFind a Basis For the Null Space of a Given $2\times 3$ Matrix Let \[A=\begin{bmatrix} 1 & 1 & 0 \\ 1 &1 &0 \end{bmatrix}\] be a matrix. Find a basis of the null space of the matrix $A$. (Remark: a null space is also called a kernel.)   Solution. The null space $\calN(A)$ of the matrix $A$ is by […]

You may also like...

9 Responses

  1. 04/21/2017

    […] Quiz 6. Determine vectors in null space, range / Find a basis of null space […]

  2. 04/21/2017

    […] Quiz 6. Determine vectors in null space, range / Find a basis of null space […]

  3. 04/26/2017

    […] Quiz 6. Determine vectors in null space, range / Find a basis of null space […]

  4. 04/26/2017

    […] Quiz 6. Determine vectors in null space, range / Find a basis of null space […]

  5. 04/26/2017

    […] Quiz 6. Determine vectors in null space, range / Find a basis of null space […]

  6. 07/14/2017

    […] Quiz 6. Determine vectors in null space, range / Find a basis of null space […]

  7. 07/15/2017

    […] Quiz 6. Determine vectors in null space, range / Find a basis of null space […]

  8. 07/27/2017

    […] Quiz 6. Determine vectors in null space, range / Find a basis of null space […]

  9. 08/06/2017

    […] Quiz 6. Determine vectors in null space, range / Find a basis of null space […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Find a Condition that a Vector be a Linear Combination

Let \[\mathbf{v}=\begin{bmatrix} a \\ b \\ c \end{bmatrix}, \qquad \mathbf{v}_1=\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix} 2 \\...

Close