# abelian-group-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Injective Group Homomorphism that does not have Inverse Homomorphism Let $A=B=\Z$ be the additive group of integers. Define a map $\phi: A\to B$ by sending $n$ to $2n$ for any integer $n\in A$. (a) Prove that $\phi$ is a group homomorphism. (b) Prove that $\phi$ is injective. (c) Prove that there does not exist a group homomorphism $\psi:B […]
- Determine Whether Trigonometry Functions $\sin^2(x), \cos^2(x), 1$ are Linearly Independent or Dependent Let $f(x)=\sin^2(x)$, $g(x)=\cos^2(x)$, and $h(x)=1$. These are vectors in $C[-1, 1]$. Determine whether the set $\{f(x), \, g(x), \, h(x)\}$ is linearly dependent or linearly independent. (The Ohio State University, Linear Algebra Midterm Exam […]
- No/Infinitely Many Square Roots of 2 by 2 Matrices (a) Prove that the matrix $A=\begin{bmatrix} 0 & 1\\ 0& 0 \end{bmatrix}$ does not have a square root. Namely, show that there is no complex matrix $B$ such that $B^2=A$. (b) Prove that the $2\times 2$ identity matrix $I$ has infinitely many distinct square root […]
- Possibilities For the Number of Solutions for a Linear System Determine whether the following systems of equations (or matrix equations) described below has no solution, one unique solution or infinitely many solutions and justify your answer. (a) \[\left\{ \begin{array}{c} ax+by=c \\ dx+ey=f, \end{array} \right. \] where $a,b,c, d$ […]
- The Transpose of a Nonsingular Matrix is Nonsingular Let $A$ be an $n\times n$ nonsingular matrix. Prove that the transpose matrix $A^{\trans}$ is also nonsingular. Definition (Nonsingular Matrix). By definition, $A^{\trans}$ is a nonsingular matrix if the only solution to […]
- Finite Group and Subgroup Criteria Let $G$ be a finite group and let $H$ be a subset of $G$ such that for any $a,b \in H$, $ab\in H$. Then show that $H$ is a subgroup of $G$. Proof. Let $a \in H$. To show that $H$ is a subgroup of $G$, it suffices to show that the inverse $a^{-1}$ is in $H$. If […]
- Express a Vector as a Linear Combination of Other Vectors Express the vector $\mathbf{b}=\begin{bmatrix} 2 \\ 13 \\ 6 \end{bmatrix}$ as a linear combination of the vectors \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}, \mathbf{v}_2= \begin{bmatrix} 1 \\ 2 \\ 1 […]
- Prove that $\mathbf{v} \mathbf{v}^\trans$ is a Symmetric Matrix for any Vector $\mathbf{v}$ Let $\mathbf{v}$ be an $n \times 1$ column vector. Prove that $\mathbf{v} \mathbf{v}^\trans$ is a symmetric matrix. Definition (Symmetric Matrix). A matrix $A$ is called symmetric if $A^{\trans}=A$. In terms of entries, an $n\times n$ matrix $A=(a_{ij})$ is […]