# abelian-group-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Prove that $(A + B) \mathbf{v} = A\mathbf{v} + B\mathbf{v}$ Using the Matrix Components Let $A$ and $B$ be $n \times n$ matrices, and $\mathbf{v}$ an $n \times 1$ column vector. Use the matrix components to prove that $(A + B) \mathbf{v} = A\mathbf{v} + B\mathbf{v}$. Solution. We will use the matrix components $A = (a_{i j})_{1 \leq i, j \leq n}$, $B = […]
- Matrices Satisfying $HF-FH=-2F$ Let $F$ and $H$ be an $n\times n$ matrices satisfying the relation \[HF-FH=-2F.\] (a) Find the trace of the matrix $F$. (b) Let $\lambda$ be an eigenvalue of $H$ and let $\mathbf{v}$ be an eigenvector corresponding to $\lambda$. Show that there exists an positive integer $N$ […]
- Subgroup of Finite Index Contains a Normal Subgroup of Finite Index Let $G$ be a group and let $H$ be a subgroup of finite index. Then show that there exists a normal subgroup $N$ of $G$ such that $N$ is of finite index in $G$ and $N\subset H$. Proof. The group $G$ acts on the set of left cosets $G/H$ by left multiplication. Hence […]
- Find a Nonsingular Matrix $A$ satisfying $3A=A^2+AB$ (a) Find a $3\times 3$ nonsingular matrix $A$ satisfying $3A=A^2+AB$, where \[B=\begin{bmatrix} 2 & 0 & -1 \\ 0 &2 &-1 \\ -1 & 0 & 1 \end{bmatrix}.\] (b) Find the inverse matrix of $A$. Solution (a) Find a $3\times 3$ nonsingular matrix $A$. Assume […]
- Is the Map $T(f)(x) = f(0) + f(1) \cdot x + f(2) \cdot x^2 + f(3) \cdot x^3$ a Linear Transformation? Let $C ([0, 3] )$ be the vector space of real functions on the interval $[0, 3]$. Let $\mathrm{P}_3$ denote the set of real polynomials of degree $3$ or less. Define the map $T : C ([0, 3] ) \rightarrow \mathrm{P}_3 $ by \[T(f)(x) = f(0) + f(1) \cdot x + f(2) \cdot x^2 + f(3) […]
- Ring Homomorphisms from the Ring of Rational Numbers are Determined by the Values at Integers Let $R$ be a ring with unity. Suppose that $f$ and $g$ are ring homomorphisms from $\Q$ to $R$ such that $f(n)=g(n)$ for any integer $n$. Then prove that $f=g$. Proof. Let $a/b \in \Q$ be an arbitrary rational number with integers $a, b$. Then we […]
- Find Values of $a, b, c$ such that the Given Matrix is Diagonalizable For which values of constants $a, b$ and $c$ is the matrix \[A=\begin{bmatrix} 7 & a & b \\ 0 &2 &c \\ 0 & 0 & 3 \end{bmatrix}\] diagonalizable? (The Ohio State University, Linear Algebra Final Exam Problem) Solution. Note that the […]
- The Sum of Subspaces is a Subspace of a Vector Space Let $V$ be a vector space over a field $K$. If $W_1$ and $W_2$ are subspaces of $V$, then prove that the subset \[W_1+W_2:=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x}\in W_1, \mathbf{y}\in W_2\}\] is a subspace of the vector space $V$. Proof. We prove the […]