A bijective ring homomorphism is called an isomorphism.

If there is an isomorphism from $R$ to $S$, then we say that rings $R$ and $S$ are isomorphic (as rings).

Proof.

Suppose that the rings are isomorphic. Then we have a ring isomorphism
\[f:2\Z \to 3\Z.\]
Let us put $f(2)=3a$ for some integer $a$. Then we compute $f(4)$ in two ways.
First we have
\[f(4)=f(2+2)=f(2)+f(2)=3a+3a=6a.\]

Next we have
\[f(4)=f(2\cdot 2)=f(2)\cdot f(2)=3a\cdot 3a=9a^2.\]
These are equal and hence we have
\[6a=9a^2.\]
The only integer solution is $a=0$.

But then we have $f(0)=0=f(2)$, which contradicts that $f$ is an isomorphism (hence in particular injective).
Therefore, there is no such isomorphism $f$, thus the rings $2\Z$ and $3\Z$ are not isomorphic.

A Maximal Ideal in the Ring of Continuous Functions and a Quotient Ring
Let $R$ be the ring of all continuous functions on the interval $[0, 2]$.
Let $I$ be the subset of $R$ defined by
\[I:=\{ f(x) \in R \mid f(1)=0\}.\]
Then prove that $I$ is an ideal of the ring $R$.
Moreover, show that $I$ is maximal and determine […]

Characteristic of an Integral Domain is 0 or a Prime Number
Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.
Definition of the characteristic of a ring.
The characteristic of a commutative ring $R$ with $1$ is defined as […]

The Quotient Ring by an Ideal of a Ring of Some Matrices is Isomorphic to $\Q$.
Let
\[R=\left\{\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \quad \middle | \quad a, b\in \Q \,\right\}.\]
Then the usual matrix addition and multiplication make $R$ an ring.
Let
\[J=\left\{\, \begin{bmatrix}
0 & b\\
0& 0
\end{bmatrix} […]

Generators of the Augmentation Ideal in a Group Ring
Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by
\[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\]
where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring […]

$(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain.
Let $R$ be an integral domain. Then prove that the ideal $(x^3-y^2)$ is a prime ideal in the ring $R[x, y]$.
Proof.
Consider the ring $R[t]$, where $t$ is a variable. Since $R$ is an integral domain, so is $R[t]$.
Define the function $\Psi:R[x,y] \to R[t]$ sending […]

The Preimage of Prime ideals are Prime Ideals
Let $f: R\to R'$ be a ring homomorphism. Let $P$ be a prime ideal of the ring $R'$.
Prove that the preimage $f^{-1}(P)$ is a prime ideal of $R$.
Proof.
The preimage of an ideal by a ring homomorphism is an ideal.
(See the post "The inverse image of an ideal by […]