Rotation Matrix in Space and its Determinant and Eigenvalues

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 218

For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
\[A=\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}.\]

(a) Find the determinant of the matrix $A$.

(b) Show that $A$ is an orthogonal matrix.

(c) Find the eigenvalues of $A$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

(a) The determinant of the matrix $A$

By the cofactor expansion corresponding to the third row, we compute
\begin{align*}
\det(A)&=\begin{vmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{vmatrix}\\
&=0\cdot \begin{vmatrix}
-\sin \theta & 0\\
\cos \theta& 0
\end{vmatrix}-0\cdot \begin{vmatrix}
\cos \theta & 0\\
\sin \theta& 0
\end{vmatrix}+1\cdot \begin{vmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{vmatrix}\\
&=\cos^2 \theta +\sin^2 \theta\\
&=1.
\end{align*}
The last step follows from the famous trigonometry identity
\[\cos^2 \theta +\sin^2 \theta=1.\] Thus we have
\[\det(A)=1.\]

(b) The matrix $A$ is an orthogonal matrix

We give two solutions for part (b).

The first solution of (b)

The first solution computes $A^{\trans}A$ and show that it is the identity matrix $I$.
We have
\begin{align*}
A^{\trans}A&=\begin{bmatrix}
\cos\theta & \sin\theta & 0 \\
-\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}\\
&=\begin{bmatrix}
\cos^2 \theta +\sin^2\theta & 0 & 0 \\
0 &\cos^2 \theta+\sin^2 \theta &0 \\
0 & 0 & 1
\end{bmatrix}\\
&=\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &0 \\
0 & 0 & 1
\end{bmatrix}=I.
\end{align*}
Similarly, you can check that $AA^{\trans}=I$. Thus $A$ is an orthogonal matrix.

The second solution of (b)

The second proof uses the following fact: a matrix is orthogonal if and only its column vectors form an orthonormal set.
Let
\[A_1=\begin{bmatrix}
\cos \theta \\
\sin \theta \\
0
\end{bmatrix}, A_2=\begin{bmatrix}
-\sin\theta \\
\cos \theta \\
0
\end{bmatrix}, A_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}\] be the column vectors of the matrix $A$. The length of these vectors are all $1$. For example, we have
\begin{align*}
||A_1||=\sqrt{(\cos\theta)^2+(\sin \theta)^2+0^2}=\sqrt{1}=1.
\end{align*}
Similarly, we have $||A_2||=||A_3||=1$.
The dot (inner) product of $A_1$ and $A_2$ is
\begin{align*}
A_1\cdot A_2=\cos \theta \cdot (-\sin \theta)+\sin \theta \cdot \cos \theta +0\cdot 0=0.
\end{align*}
Similarly, we have $A_1\cdot A_3=A_2\cdot A_3=0$.
Therefore, the column vectors $A_1, A_2, A_3$ are orthonormal vectors. Hence by the above fact, the matrix $A$ is orthogonal.

(c) The eigenvalues of $A$

We compute the characteristic polynomial $p(t)=\det(A-tI)$ as follows.
\begin{align*}
p(t)&=\det(A-tI)=\begin{vmatrix}
\cos\theta-t & -\sin\theta & 0 \\
\sin\theta &\cos\theta -t&0 \\
0 & 0 & 1-t
\end{vmatrix}\\
&=(1-t)\begin{vmatrix}
\cos \theta -t & -\sin \theta\\
\sin \theta& \cos \theta-t
\end{vmatrix} \text{ by the third row cofactor expansion}\\
&=(1-t)(\cos^2 \theta -2t \cos \theta +t^2 +\sin^2 \theta)\\
&=(1-t)(t^2-(2\cos \theta)t+1).
\end{align*}

The eigenvalues are roots of the characteristic polynomial $p(t)$, hence we solve
\[p(t)=(1-t)(t^2-(2\cos \theta)t+1)=0.\] One solution is $t=1$. The other solutions come from the quadratic polynomial in $p(t)$.
By the quadratic formula, those solutions are
\begin{align*}
t&=\cos\theta \pm\sqrt{\cos^2 \theta -1}\\
&=\cos\theta \pm \sqrt{-\sin^2 \theta}\\
&=\cos \theta \pm i \sin \theta
\end{align*}
since $\sin \theta\geq 0$ since $0 \leq \theta \leq \pi$.
Therefore the eigenvalues of the matrix $A$ are
\[1, \cos \theta \pm i \sin \theta.\]

Related Question.

The following problem treats the rotation matrix in the plane.

Problem.
Consider the $2\times 2$ matrix
\[A=\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta \end{bmatrix},\] where $\theta$ is a real number $0\leq \theta < 2\pi$.

 

(a) Find the characteristic polynomial of the matrix $A$.

(b) Find the eigenvalues of the matrix $A$.

(c) Determine the eigenvectors corresponding to each of the eigenvalues of $A$.

The solution is given in the post ↴
Rotation Matrix in the Plane and its Eigenvalues and Eigenvectors


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

1 Response

  1. 08/28/2017

    […] The solution is given in the post ↴ Rotation Matrix in Space and its Determinant and Eigenvalues […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Graphs of characteristic polynomials
Given Graphs of Characteristic Polynomial of Diagonalizable Matrices, Determine the Rank of Matrices

Let $A, B, C$ are $2\times 2$ diagonalizable matrices. The graphs of characteristic polynomials of $A, B, C$ are shown...

Close