Rotation Matrix in the Plane and its Eigenvalues and Eigenvectors

Linear algebra problems and solutions

Problem 550

Consider the $2\times 2$ matrix
\[A=\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta \end{bmatrix},\] where $\theta$ is a real number $0\leq \theta < 2\pi$.

 

(a) Find the characteristic polynomial of the matrix $A$.

(b) Find the eigenvalues of the matrix $A$.

(c) Determine the eigenvectors corresponding to each of the eigenvalues of $A$.

LoadingAdd to solve later

Sponsored Links


Proof.

(a) Find the characteristic polynomial of the matrix $A$.

The characteristic polynomial $p(t)$ of $A$ is computed as follows.
Let $I$ be the $2\times 2$ identity matrix.
We have
\begin{align*}
p(t)&=\det(A-tI)\\
&=\begin{vmatrix}
\cos \theta -t & -\sin \theta\\
\sin \theta& \cos \theta -t
\end{vmatrix}\\
&=(\cos \theta -t)^2+\sin^2 \theta \tag{*}\\
&=t^2-(2\cos \theta) t+\cos^2 \theta+\sin^2 \theta\\
&=t^2-(2\cos \theta) t+1
\end{align*}
by the trigonometry identity $\cos^2 \theta+\sin^2 \theta=1$.

Hence the characteristic polynomial of $A$ is
\[p(t)=t^2-(2\cos \theta) t+1.\]

(b) Find the eigenvalues of the matrix $A$.

The eigenvalues of $A$ are roots of the characteristic polynomial $p(t)$.
So let us solve
\[p(t)=t^2-(2\cos \theta) t+1=0.\] By the quadratic formula, we have
\begin{align*}
t&=\frac{2\cos \theta \pm \sqrt{(2\cos \theta)^2-4}}{2}\\[6pt] &=\cos \theta \pm \sqrt{\cos^2 \theta -1}\\
&=\cos \theta \pm \sqrt{-\sin^2 \theta}\\
&=\cos \theta \pm i \sin \theta =e^{\pm i\theta}.
\end{align*}

Hence eigenvalues of $A$ are
\[\cos \theta \pm i \sin \theta =e^{\pm i\theta}.\]


Alternatively, we could have used the equation (*).
Then we have
\begin{align*}
&p(t)=(\cos \theta -t)^2+\sin^2 \theta=0\\
&\Leftrightarrow (\cos \theta-t)^2=-\sin^2 \theta\\
&\Leftrightarrow \cos \theta -t=\pm i \sin \theta
\end{align*}
and thus, we obtain the eigenvalues
\[\cos \theta \pm i \sin \theta =e^{\pm i\theta}.\]

(c) Determine the eigenvectors

Let us first find the eigenvectors corresponding to the eigenvalue $\lambda=\cos \theta +i \sin \theta$.
We have
\begin{align*}
A-\lambda I=\begin{bmatrix}
-i \sin \theta & -\sin \theta\\
\sin \theta& -i \sin \theta
\end{bmatrix}.
\end{align*}


If $\theta=0, \pi$, then $\sin \theta=0$ and we have
\[A-\lambda I=\begin{bmatrix}
0 & 0\\
0& 0
\end{bmatrix}\] and thus each nonzero vector of $\R^2$ is an eigenvector.


If $\lambda \neq 0, \pi$, then $\sin \theta \neq 0$.
Thus we have by elementary row operations
\begin{align*}
A-\lambda I=\begin{bmatrix}
-i \sin \theta & -\sin \theta\\
\sin \theta& -i \sin \theta
\end{bmatrix}
\xrightarrow[\frac{1}{\sin \theta} R_2]{\frac{i}{\sin \theta} R_1}
\begin{bmatrix}
1 & -i\\
1& -i
\end{bmatrix}
\xrightarrow{R_2-R_1} \begin{bmatrix}
1 & -i\\
0& 0
\end{bmatrix}.
\end{align*}
It follows that the eigenvectors for $\lambda$ are
\[\begin{bmatrix}
i \\
1
\end{bmatrix}t,\] for any nonzero scalar $t$.

The other eigenvalue is the conjugate $\bar{\lambda}$ of $\lambda$.
Since $A$ is a real matrix, the eigenvectors of $\bar{\lambda}$ are the conjugate of those of $\lambda$.
Hence the eigenvectors corresponding to $\bar{\lambda}$ is
\[\begin{bmatrix}
-i \\
1
\end{bmatrix}t,\] for any nonzero scalar $t$.


In summary, when $\theta=0, \pi$, the eigenvalues are $1, -1$, respectively, and every nonzero vector of $\R^2$ is an eigenvector.

If $\theta \neq 0, \pi$, then the eigenvectors corresponding to the eigenvalue $\cos \theta +i\sin \theta$ are
\[\begin{bmatrix}
i \\
1
\end{bmatrix}t,\] for any nonzero scalar $t$.
The eigenvectors corresponding to the eigenvalue $\cos \theta -i\sin \theta$ are
\[\begin{bmatrix}
-i \\
1
\end{bmatrix}t,\] for any nonzero scalar $t$.

Related Question.

For a similar proble, try the following.

Problem.
For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
\[A=\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}.\](a) Find the determinant of the matrix $A$.

(b) Show that $A$ is an orthogonal matrix.

(c) Find the eigenvalues of $A$.

The solution is given in the post ↴
Rotation Matrix in Space and its Determinant and Eigenvalues


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

1 Response

  1. 08/28/2017

    […] The solution is given in the post ↴ Rotation Matrix in the Plane and its Eigenvalues and Eigenvectors […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Using the Wronskian for Exponential Functions, Determine Whether the Set is Linearly Independent

By calculating the Wronskian, determine whether the set of exponential functions \[\{e^x, e^{2x}, e^{3x}\}\] is linearly independent on the interval...

Close