Solve the Linear Dynamical System $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} =A\mathbf{x}$ by Diagonalization

Differential Equations Problems and Solutions

Problem 667

(a) Find all solutions of the linear dynamical system
\[\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} =\begin{bmatrix}
1 & 0\\
0& 3
\end{bmatrix}\mathbf{x},\] where $\mathbf{x}(t)=\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$ is a function of the variable $t$.

(b) Solve the linear dynamical system
\[\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}=\begin{bmatrix}
2 & -1\\
-1& 2
\end{bmatrix}\mathbf{x}\] with the initial value $\mathbf{x}(0)=\begin{bmatrix}
1 \\
3
\end{bmatrix}$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) Find all solutions of the linear dynamical system $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} =\begin{bmatrix}
1 & 0\\
0& 3
\end{bmatrix}\mathbf{x}$

Note that the given system is
\[\begin{bmatrix}
\frac{\mathrm{d}{x_1}}{\mathrm{d} t} \\[6pt] \frac{\mathrm{d}{x_2}}
{\mathrm{d} t}
\end{bmatrix}
=\begin{bmatrix}
x_1 \\
3x_2
\end{bmatrix}.\] Thus, we have two uncoupled differential equations
\begin{align*}
\frac{\mathrm{d}{x_1}}{\mathrm{d} t} &=x_1 \\[6pt] \frac{\mathrm{d}{x_2}}{\mathrm{d} t} &=3x_2.
\end{align*}

The solutions to these differential equations are
\begin{align*}
x_1(t)&=e^t x_1(0)\\
x_2(t)&=e
^{3t} x_2(0).
\end{align*}
Thus we see that
\[\mathbf{x}(t)=\begin{bmatrix}
e^t x_1(0) \\[6pt] e
^{3t} x_2(0)
\end{bmatrix}.\]

(b) Solve the linear dynamical system $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}=\begin{bmatrix}
2 & -1\\
-1& 2
\end{bmatrix}\mathbf{x}$

Let $A=\begin{bmatrix}
2 & -1\\
-1& 2
\end{bmatrix}$.
Then the matrix $A$ has eigenvalues $1, 3$ and corresponding eigenvectors are
\[\begin{bmatrix}
1 \\
1
\end{bmatrix} \text{ and } \begin{bmatrix}
-1 \\
1
\end{bmatrix},\] respectively.
(See the post Diagonalize a 2 by 2 Symmetric Matrix for details.)

Thus, if we put $S=\begin{bmatrix}
1 & -1\\
1& 1
\end{bmatrix}$, then $A$ is diagonalizable by $S$. That is,
\[S^{-1}AS=D,\] where
\[D=\begin{bmatrix}
1 & 0\\
0& 3
\end{bmatrix}.\]


Substituting $A=SDS^{-1}$ into the given system, we have
\begin{align*}
\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}&=(SDS^{-1})\mathbf{x}\\[6pt] \Leftrightarrow \quad S^{-1}\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}&=(DS^{-1})\mathbf{x}\\[6pt] \Leftrightarrow \quad \frac{\mathrm{d}(S^{-1} \mathbf{x})}{\mathrm{d}t}&=(DS^{-1})\mathbf{x}.
\end{align*}

Let $\mathbf{u}(t)=S^{-1}\mathbf{x}$. Then we obtain the system
\[\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} =\begin{bmatrix}
1 & 0\\
0& 3
\end{bmatrix}\mathbf{u}.\] We solved this system in part (a) and the general solution is given by
\[\mathbf{u}(t)=\begin{bmatrix}
e^t u_1(0) \\[6pt] e^{3t} u_2(0)
\end{bmatrix}.\]

We determine the values of $u_1(0)$ and $u_2(0)$ using the given initial value $\mathbf{x}(0)=\begin{bmatrix}
1 \\
3
\end{bmatrix}$.
We have
\[\begin{bmatrix}
u_1(0) \\
u_2(0)
\end{bmatrix}=\mathbf{u}(0)=S^{-1} \mathbf{x}(0)=\frac{1}{2}\begin{bmatrix}
1 & 1\\
-1& 1
\end{bmatrix}\begin{bmatrix}
1 \\
3
\end{bmatrix}=\begin{bmatrix}
2 \\
1
\end{bmatrix}.\] (Note that $\begin{bmatrix}
2 \\
1
\end{bmatrix}$ is the coordinate vector of $\mathbf{x}(0)=\begin{bmatrix}
1 \\
3
\end{bmatrix}$ with respect to the eigenbasis $\begin{bmatrix}
1 \\
1
\end{bmatrix}, \begin{bmatrix}
-1 \\
1
\end{bmatrix}$.)

It follows that the solution of the original system is
\begin{align*}
\mathbf{x}=S\mathbf{u}=\begin{bmatrix}
1 & -1\\
1& 1
\end{bmatrix}
\begin{bmatrix}
2e^t \\[6pt] e^{3t}
\end{bmatrix}
=2e^t\begin{bmatrix}
1 \\
1
\end{bmatrix}+ e^{3t}\begin{bmatrix}
-1 \\
1
\end{bmatrix}.
\end{align*}

Another Solution of (b)

In this solution, we use the following theorem.

Theorem. Let $A$ be a diagonalizable $n\times n$ matrix.
Let $\{\mathbf{v}_1,\dots, \mathbf{v}_n\}$ be an eigenbasis for $A$, with associated eigenvalues $\lambda_1, \dots, \lambda_n$. Then the general solution of the linear dynamical system
\[\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} =A\mathbf{x}\] is
\[\mathbf{x}(t)=c_1 e^{\lambda_1 t}\mathbf{v}_1+\cdots +c_n e^{\lambda_n t}\mathbf{v}_n,\] where $c_1, \dots, c_n$ are arbitrary complex numbers.

As in the above solution, we know that the matrix $A=\begin{bmatrix}
2 & -1\\
-1& 2
\end{bmatrix}$ has eigenvalues $1, 3$ and corresponding eigenvectors are
\[\begin{bmatrix}
1 \\
1
\end{bmatrix} \text{ and } \begin{bmatrix}
-1 \\
1
\end{bmatrix},\] respectively.

So the formula in the theorem yields the general solution
\[\mathbf{x}(t)=c_1 e^{t}\begin{bmatrix}
1 \\
1
\end{bmatrix}+c_2 e^{3t}\begin{bmatrix}
-1 \\
1
\end{bmatrix},\] where $c_1, c_2$ are constants.


Since the initial is $\mathbf{x}(0)=\begin{bmatrix}
1 \\
3
\end{bmatrix}$, we have
\begin{align*}
\begin{bmatrix}
1 \\
3
\end{bmatrix}=c_1\begin{bmatrix}
1 \\
1
\end{bmatrix}+c_2\begin{bmatrix}
-1 \\
1
\end{bmatrix}.
\end{align*}
Solving this system, we obtain $c_1=2$ and $c_2=1$.
Thus, the solution of the linear dynamical system with the given initial value is
\[\mathbf{x}(t)=2 e^{t}\begin{bmatrix}
1 \\
1
\end{bmatrix}+e^{3t}\begin{bmatrix}
-1 \\
1
\end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
Prove that $\{ 1 , 1 + x , (1 + x)^2 \}$ is a Basis for the Vector Space of Polynomials of Degree $2$ or Less

Let $\mathbf{P}_2$ be the vector space of polynomials of degree $2$ or less. (a) Prove that the set $\{ 1...

Close