Spanning Sets for $\R^2$ or its Subspaces

Vector Space Problems and Solutions

Problem 691

In this problem, we use the following vectors in $\R^2$.
\[\mathbf{a}=\begin{bmatrix}
1 \\
0
\end{bmatrix}, \mathbf{b}=\begin{bmatrix}
1 \\
1
\end{bmatrix}, \mathbf{c}=\begin{bmatrix}
2 \\
3
\end{bmatrix}, \mathbf{d}=\begin{bmatrix}
3 \\
2
\end{bmatrix}, \mathbf{e}=\begin{bmatrix}
0 \\
0
\end{bmatrix}, \mathbf{f}=\begin{bmatrix}
5 \\
6
\end{bmatrix}.\] For each set $S$, determine whether $\Span(S)=\R^2$. If $\Span(S)\neq \R^2$, then give algebraic description for $\Span(S)$ and explain the geometric shape of $\Span(S)$.

(a) $S=\{\mathbf{a}, \mathbf{b}\}$
(b) $S=\{\mathbf{a}, \mathbf{c}\}$
(c) $S=\{\mathbf{c}, \mathbf{d}\}$
(d) $S=\{\mathbf{a}, \mathbf{f}\}$
(e) $S=\{\mathbf{e}, \mathbf{f}\}$
(f) $S=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
(g) $S=\{\mathbf{e}\}$

 
LoadingAdd to solve later

Solution.

By definition, the subspace $\Span(S)$ spanned by $S$ is the set of all linear combinations of vectors in $S$. Thus, $\Span(S)$ is a subset in $\R^2$. The question is whether all of the vectors in $\R^2$ are linear combinations of vectors in $S$ or not.

(a) $S=\{\mathbf{a}, \mathbf{b}\}$

Let $\begin{bmatrix}
a \\
b
\end{bmatrix}$ be an arbitrary vector in $\R^2$. We determine whether it is a linear combination of $\mathbf{a}$ and $\mathbf{b}$:
\[\begin{bmatrix}
a \\
b
\end{bmatrix}=c_1\mathbf{a}+c_2\mathbf{b}.\] The augmented matrix is
\begin{align*}
\left[\begin{array}{rr|r}
1 & 1 & a \\
0 & 1 & b
\end{array} \right] \xrightarrow{R_1-R_2}
\left[\begin{array}{rr|r}
1 & 0 & a-b \\
0 & 1 & b
\end{array} \right].
\end{align*}
Hence, the solution is $c_1=a-b$, $c_2=b$.
Thus, we have
\[\begin{bmatrix}
a \\
b
\end{bmatrix}=(a-b)\mathbf{a}+b\mathbf{b},\] and this implies that every vector in $\R^2$ is a linear combination of $\mathbf{a}$ and $\mathbf{b}$.
Hence, $\Span(S)=\R^2$.

(b) $S=\{\mathbf{a}, \mathbf{c}\}$

Just like part (a), let $\begin{bmatrix}
a \\
b
\end{bmatrix}$ be any vector in $\R^2$.
Are there $c_1, c_2$ satisfying
\[\begin{bmatrix}
a \\
b
\end{bmatrix}=c_1\mathbf{a}+c_2\mathbf{c}?\] The augmented matrix is
\begin{align*}
\left[\begin{array}{rr|r}
1 & 2 & a \\
0 & 3 & b
\end{array} \right] \xrightarrow{\frac{1}{3} R_2}
\left[\begin{array}{rr|r}
1 & 2 & a \\
0 & 1 & b/3
\end{array} \right] \xrightarrow{R_1-2R_2}
\left[\begin{array}{rr|r}
1 & 0 & a-\frac{2}{3}b \\
0 & 1 & b/3
\end{array} \right].
\end{align*}
Hence, we have $c_1=a-\frac{2}{3}b$, $c_2=b/3$.
Thus,
\[\begin{bmatrix}
a \\
b
\end{bmatrix}=\frac{2b}{3} \mathbf{a}+\frac{b}{3}\mathbf{c}.\] This yields that every vector in $\R^2$ is in $\Span(S)$. Hence $\Span(S)=\R^2$.

(c) $S=\{\mathbf{c}, \mathbf{d}\}$

The strategy for this problem is the exactly same as before. So let us consider
\begin{align*}
\left[\begin{array}{rr|r}
2 & 3 & a \\
3 & 2 & b
\end{array} \right] \xrightarrow{R_2-R_1}
\left[\begin{array}{rr|r}
2 & 3 & a \\
1 & -1 & b-a
\end{array} \right] \xrightarrow{R_1\leftrightarrow R_2}
\left[\begin{array}{rr|r}
1 & -1 & b-a \\
2 & 3 & a
\end{array} \right]\\[6pt] \xrightarrow{R_2- 2 R_1}
\left[\begin{array}{rr|r}
1 & -1 & b-a \\
0 & 5 & 3a-2b
\end{array} \right] \xrightarrow{\frac{1}{5}R_2}
\left[\begin{array}{rr|r}
1 & -1 & b-a \\
0 & 1 & \frac{3}{5}a-\frac{2}{5}b
\end{array} \right] \\[6pt] \xrightarrow{R_1+R_2}
\left[\begin{array}{rr|r}
1 & 0 & -\frac{2}{5}a+\frac{3}{5}b \\
0 & 1 & \frac{3}{5}a-\frac{2}{5}b
\end{array} \right].
\end{align*}
It follows that any vector $\begin{bmatrix}
a \\
b
\end{bmatrix}\in \R^2$ can be written as a linear combination
\[\begin{bmatrix}
a \\
b
\end{bmatrix}=\left(-\frac{2}{5}a+\frac{3}{5}b \right)\mathbf{c}+\left( \frac{3}{5}a-\frac{2}{5}b \right) \mathbf{d}.\] Hence, $\Span(S)=\R^2$.

(d) $S=\{\mathbf{a}, \mathbf{f}\}$

This is also similar to previous problems. For any vector $\begin{bmatrix}
a \\
b
\end{bmatrix}\in \R^2$, we have
\begin{align*}
\left[\begin{array}{rr|r}
1 & 5 & a \\
0 & 6 & b
\end{array} \right] \xrightarrow{\frac{1}{6}R_2}
\left[\begin{array}{rr|r}
1 & 5 & a \\
0 & 1 & b/6
\end{array} \right] \xrightarrow{R_1-5R_2}
\left[\begin{array}{rr|r}
1 & 0 & a-\frac{5}{6}b \\
0 & 1 & b/6
\end{array} \right].
\end{align*}
This yields that
\[\begin{bmatrix}
a \\
b
\end{bmatrix}=\left(a-\frac{5b}{6} \right)\mathbf{a}+\left(\frac{b}{6}\right)\mathbf{f}.\] Hence, $\Span(S)=\R^2$.

(e) $S=\{\mathbf{e}, \mathbf{f}\}$

Note that as the vector $\mathbf{e}$ is the zero vector, any linear combination of $\mathbf{e}$ and $\mathbf{f}$ is just a scalar multiple of $\mathbf{f}$:
\[c_1\mathbf{e}+c_2\mathbf{f}=c_2\mathbf{f}.\] Thus, the algebraic description is
\begin{align*}
\Span(S)=\Span(\mathbf{e}, \mathbf{f})=\Span(\mathbf{f})=\{\mathbf{x}\in \R^2 \mid \mathbf{x}=c\mathbf{f} \text{ for some } c\in \R\}.
\end{align*}
Geometrically, the span is the line parametrized by $c\mathbf{f}=c\begin{bmatrix}
5 \\
6
\end{bmatrix}$ for any $c\in \R$.

(f) $S=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Note that $\Span(\mathbf{a}, \mathbf{b})$ is contained in $\Span(\mathbf{a}, \mathbf{b}, \mathbf{c})$ because any linear combination of $\mathbf{a}$ and $\mathbf{b}$ is a linear combination of $\mathbf{a}, \mathbf{b}$, and $\mathbf{c}$ by taking the coefficient of $\mathbf{c}$ to be $0$.
We already saw in part (a) that $\Span(\mathbf{a}, \mathbf{b})=\R^2$. Hence, we must have $\Span(\mathbf{a}, \mathbf{b}, \mathbf{c})=\R^2$ as well.

(g) $S=\{\mathbf{e}\}$

Note that $\Span(\mathbf{e})$ is the set of all linear combination of $\mathbf{e}$, which is just the zero vector. So,
\[\Span(\mathbf{e})=\left\{\begin{bmatrix}
0 \\
0
\end{bmatrix}\right\}.\]Geometrically, this is just one point: the origin in the $x$-$y$ plane.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Vector Space of Polynomials and Coordinate VectorsVector Space of Polynomials and Coordinate Vectors Let $P_2$ be the vector space of all polynomials of degree two or less. Consider the subset in $P_2$ \[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where \begin{align*} &p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\ &p_3(x)=2x^2, &p_4(x)=2x^2+x+1. \end{align*} (a) Use the basis […]
  • Linear Independent Vectors and the Vector Space Spanned By ThemLinear Independent Vectors and the Vector Space Spanned By Them Let $V$ be a vector space over a field $K$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be linearly independent vectors in $V$. Let $U$ be the subspace of $V$ spanned by these vectors, that is, $U=\Span \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$. Let […]
  • Find a basis for $\Span(S)$, where $S$ is a Set of Four VectorsFind a basis for $\Span(S)$, where $S$ is a Set of Four Vectors Find a basis for $\Span(S)$ where $S= \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} , \begin{bmatrix} -1 \\ -2 \\ -1 \end{bmatrix} , \begin{bmatrix} 2 \\ 6 \\ -2 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \right\}$.   Solution. We […]
  • Determine Whether Each Set is a Basis for $\R^3$Determine Whether Each Set is a Basis for $\R^3$ Determine whether each of the following sets is a basis for $\R^3$. (a) $S=\left\{\, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} […]
  • Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam)Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam) Suppose that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$. Compute $A^2\begin{bmatrix} 4 […]
  • Does an Extra Vector Change the Span?Does an Extra Vector Change the Span? Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^5$. If $\mathbf{v}_4$ is another vector in $V$, then is the set \[S_2=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}\] still a spanning set for […]
  • The Subspace of Linear Combinations whose Sums of Coefficients are zeroThe Subspace of Linear Combinations whose Sums of Coefficients are zero Let $V$ be a vector space over a scalar field $K$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in $V$ and consider the subset \[W=\{a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k \mid a_1, a_2, \dots, a_k \in K \text{ and } […]
  • Given All Eigenvalues and Eigenspaces, Compute a Matrix ProductGiven All Eigenvalues and Eigenspaces, Compute a Matrix Product Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces \[E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Diagonalization Problems and Solutions in Linear Algebra
Is the Derivative Linear Transformation Diagonalizable?

Let $\mathrm{P}_2$ denote the vector space of polynomials of degree $2$ or less, and let $T : \mathrm{P}_2 \rightarrow \mathrm{P}_2$...

Close