# Spanning Sets for $\R^2$ or its Subspaces

## Problem 691

In this problem, we use the following vectors in $\R^2$.
$\mathbf{a}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{b}=\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{c}=\begin{bmatrix} 2 \\ 3 \end{bmatrix}, \mathbf{d}=\begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{e}=\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \mathbf{f}=\begin{bmatrix} 5 \\ 6 \end{bmatrix}.$ For each set $S$, determine whether $\Span(S)=\R^2$. If $\Span(S)\neq \R^2$, then give algebraic description for $\Span(S)$ and explain the geometric shape of $\Span(S)$.

(a) $S=\{\mathbf{a}, \mathbf{b}\}$
(b) $S=\{\mathbf{a}, \mathbf{c}\}$
(c) $S=\{\mathbf{c}, \mathbf{d}\}$
(d) $S=\{\mathbf{a}, \mathbf{f}\}$
(e) $S=\{\mathbf{e}, \mathbf{f}\}$
(f) $S=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
(g) $S=\{\mathbf{e}\}$

## Solution.

By definition, the subspace $\Span(S)$ spanned by $S$ is the set of all linear combinations of vectors in $S$. Thus, $\Span(S)$ is a subset in $\R^2$. The question is whether all of the vectors in $\R^2$ are linear combinations of vectors in $S$ or not.

### (a) $S=\{\mathbf{a}, \mathbf{b}\}$

Let $\begin{bmatrix} a \\ b \end{bmatrix}$ be an arbitrary vector in $\R^2$. We determine whether it is a linear combination of $\mathbf{a}$ and $\mathbf{b}$:
$\begin{bmatrix} a \\ b \end{bmatrix}=c_1\mathbf{a}+c_2\mathbf{b}.$ The augmented matrix is
\begin{align*}
\left[\begin{array}{rr|r}
1 & 1 & a \\
0 & 1 & b
\end{array} \right] \xrightarrow{R_1-R_2}
\left[\begin{array}{rr|r}
1 & 0 & a-b \\
0 & 1 & b
\end{array} \right].
\end{align*}
Hence, the solution is $c_1=a-b$, $c_2=b$.
Thus, we have
$\begin{bmatrix} a \\ b \end{bmatrix}=(a-b)\mathbf{a}+b\mathbf{b},$ and this implies that every vector in $\R^2$ is a linear combination of $\mathbf{a}$ and $\mathbf{b}$.
Hence, $\Span(S)=\R^2$.

### (b) $S=\{\mathbf{a}, \mathbf{c}\}$

Just like part (a), let $\begin{bmatrix} a \\ b \end{bmatrix}$ be any vector in $\R^2$.
Are there $c_1, c_2$ satisfying
$\begin{bmatrix} a \\ b \end{bmatrix}=c_1\mathbf{a}+c_2\mathbf{c}?$ The augmented matrix is
\begin{align*}
\left[\begin{array}{rr|r}
1 & 2 & a \\
0 & 3 & b
\end{array} \right] \xrightarrow{\frac{1}{3} R_2}
\left[\begin{array}{rr|r}
1 & 2 & a \\
0 & 1 & b/3
\end{array} \right] \xrightarrow{R_1-2R_2}
\left[\begin{array}{rr|r}
1 & 0 & a-\frac{2}{3}b \\
0 & 1 & b/3
\end{array} \right].
\end{align*}
Hence, we have $c_1=a-\frac{2}{3}b$, $c_2=b/3$.
Thus,
$\begin{bmatrix} a \\ b \end{bmatrix}=\frac{2b}{3} \mathbf{a}+\frac{b}{3}\mathbf{c}.$ This yields that every vector in $\R^2$ is in $\Span(S)$. Hence $\Span(S)=\R^2$.

### (c) $S=\{\mathbf{c}, \mathbf{d}\}$

The strategy for this problem is the exactly same as before. So let us consider
\begin{align*}
\left[\begin{array}{rr|r}
2 & 3 & a \\
3 & 2 & b
\end{array} \right] \xrightarrow{R_2-R_1}
\left[\begin{array}{rr|r}
2 & 3 & a \\
1 & -1 & b-a
\end{array} \right] \xrightarrow{R_1\leftrightarrow R_2}
\left[\begin{array}{rr|r}
1 & -1 & b-a \\
2 & 3 & a
\end{array} \right]\6pt] \xrightarrow{R_2- 2 R_1} \left[\begin{array}{rr|r} 1 & -1 & b-a \\ 0 & 5 & 3a-2b \end{array} \right] \xrightarrow{\frac{1}{5}R_2} \left[\begin{array}{rr|r} 1 & -1 & b-a \\ 0 & 1 & \frac{3}{5}a-\frac{2}{5}b \end{array} \right] \\[6pt] \xrightarrow{R_1+R_2} \left[\begin{array}{rr|r} 1 & 0 & -\frac{2}{5}a+\frac{3}{5}b \\ 0 & 1 & \frac{3}{5}a-\frac{2}{5}b \end{array} \right]. \end{align*} It follows that any vector \begin{bmatrix} a \\ b \end{bmatrix}\in \R^2 can be written as a linear combination \[\begin{bmatrix} a \\ b \end{bmatrix}=\left(-\frac{2}{5}a+\frac{3}{5}b \right)\mathbf{c}+\left( \frac{3}{5}a-\frac{2}{5}b \right) \mathbf{d}. Hence, $\Span(S)=\R^2$.

### (d) $S=\{\mathbf{a}, \mathbf{f}\}$

This is also similar to previous problems. For any vector $\begin{bmatrix} a \\ b \end{bmatrix}\in \R^2$, we have
\begin{align*}
\left[\begin{array}{rr|r}
1 & 5 & a \\
0 & 6 & b
\end{array} \right] \xrightarrow{\frac{1}{6}R_2}
\left[\begin{array}{rr|r}
1 & 5 & a \\
0 & 1 & b/6
\end{array} \right] \xrightarrow{R_1-5R_2}
\left[\begin{array}{rr|r}
1 & 0 & a-\frac{5}{6}b \\
0 & 1 & b/6
\end{array} \right].
\end{align*}
This yields that
$\begin{bmatrix} a \\ b \end{bmatrix}=\left(a-\frac{5b}{6} \right)\mathbf{a}+\left(\frac{b}{6}\right)\mathbf{f}.$ Hence, $\Span(S)=\R^2$.

### (e) $S=\{\mathbf{e}, \mathbf{f}\}$

Note that as the vector $\mathbf{e}$ is the zero vector, any linear combination of $\mathbf{e}$ and $\mathbf{f}$ is just a scalar multiple of $\mathbf{f}$:
$c_1\mathbf{e}+c_2\mathbf{f}=c_2\mathbf{f}.$ Thus, the algebraic description is
\begin{align*}
\Span(S)=\Span(\mathbf{e}, \mathbf{f})=\Span(\mathbf{f})=\{\mathbf{x}\in \R^2 \mid \mathbf{x}=c\mathbf{f} \text{ for some } c\in \R\}.
\end{align*}
Geometrically, the span is the line parametrized by $c\mathbf{f}=c\begin{bmatrix} 5 \\ 6 \end{bmatrix}$ for any $c\in \R$.

### (f) $S=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

Note that $\Span(\mathbf{a}, \mathbf{b})$ is contained in $\Span(\mathbf{a}, \mathbf{b}, \mathbf{c})$ because any linear combination of $\mathbf{a}$ and $\mathbf{b}$ is a linear combination of $\mathbf{a}, \mathbf{b}$, and $\mathbf{c}$ by taking the coefficient of $\mathbf{c}$ to be $0$.
We already saw in part (a) that $\Span(\mathbf{a}, \mathbf{b})=\R^2$. Hence, we must have $\Span(\mathbf{a}, \mathbf{b}, \mathbf{c})=\R^2$ as well.

### (g) $S=\{\mathbf{e}\}$

Note that $\Span(\mathbf{e})$ is the set of all linear combination of $\mathbf{e}$, which is just the zero vector. So,
$\Span(\mathbf{e})=\left\{\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right\}.$Geometrically, this is just one point: the origin in the $x$-$y$ plane.

### More from my site

• Vector Space of Polynomials and Coordinate Vectors Let $P_2$ be the vector space of all polynomials of degree two or less. Consider the subset in $P_2$ $Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},$ where \begin{align*} &p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\ &p_3(x)=2x^2, &p_4(x)=2x^2+x+1. \end{align*} (a) Use the basis […]
• Linear Independent Vectors and the Vector Space Spanned By Them Let $V$ be a vector space over a field $K$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be linearly independent vectors in $V$. Let $U$ be the subspace of $V$ spanned by these vectors, that is, $U=\Span \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$. Let […]
• Find a basis for $\Span(S)$, where $S$ is a Set of Four Vectors Find a basis for $\Span(S)$ where $S= \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} , \begin{bmatrix} -1 \\ -2 \\ -1 \end{bmatrix} , \begin{bmatrix} 2 \\ 6 \\ -2 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \right\}$.   Solution. We […]
• Determine Whether Each Set is a Basis for $\R^3$ Determine whether each of the following sets is a basis for $\R^3$. (a) $S=\left\{\, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} […] • Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam) Suppose that$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$is an eigenvector of a matrix$A$corresponding to the eigenvalue$3$and that$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$is an eigenvector of$A$corresponding to the eigenvalue$-2$. Compute$A^2\begin{bmatrix} 4 […]
• Does an Extra Vector Change the Span? Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^5$. If $\mathbf{v}_4$ is another vector in $V$, then is the set $S_2=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ still a spanning set for […]
• The Subspace of Linear Combinations whose Sums of Coefficients are zero Let $V$ be a vector space over a scalar field $K$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in $V$ and consider the subset \[W=\{a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k \mid a_1, a_2, \dots, a_k \in K \text{ and } […]
• Given All Eigenvalues and Eigenspaces, Compute a Matrix Product Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces \[E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 […]

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### Is the Derivative Linear Transformation Diagonalizable?

Let $\mathrm{P}_2$ denote the vector space of polynomials of degree $2$ or less, and let $T : \mathrm{P}_2 \rightarrow \mathrm{P}_2$...

Close