Subspace Spanned By Cosine and Sine Functions

Kyoto University Exam problems and solutions in mathematrics

Problem 435

Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$.
Define the map $f:\R^2 \to \calF[0, 2\pi]$ by
\[\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta \sin x.\] We put
\[V:=\im f=\{\alpha \cos x + \beta \sin x \in \calF[0, 2\pi] \mid \alpha, \beta \in \R\}.\]

(a) Prove that the map $f$ is a linear transformation.

(b) Prove that the set $\{\cos x, \sin x\}$ is a basis of the vector space $V$.

(c) Prove that the kernel is trivial, that is, $\ker f=\{\mathbf{0}\}$.
(This yields an isomorphism of $\R^2$ and $V$.)

(d) Define a map $g:V \to V$ by
\[g(\alpha \cos x + \beta \sin x):=\frac{d}{dx}(\alpha \cos x+ \beta \sin x)=\beta \cos x -\alpha \sin x.\] Prove that the map $g$ is a linear transformation.

(e) Find the matrix representation of the linear transformation $g$ with respect to the basis $\{\cos x, \sin x\}$.

(Kyoto University, Linear Algebra exam problem)

 
LoadingAdd to solve later

Sponsored Links


Terminology (image=range, kernel=null space)

We remark that the image is also called the range, and the kernel is also called the null space.

Proof.

(a) Prove that the map $f$ is a linear transformation.

To prove that $f:\R^2 \to \calF[0, 2\pi]$ is a linear transformation, we check the following two properties:

  1. \[f\left(\, \begin{bmatrix}
    \alpha \\
    \beta
    \end{bmatrix}+\begin{bmatrix}
    \alpha’ \\
    \beta’
    \end{bmatrix} \,\right)=f\left(\, \begin{bmatrix}
    \alpha \\
    \beta
    \end{bmatrix}\,\right)+f\left(\, \begin{bmatrix}
    \alpha’ \\
    \beta’
    \end{bmatrix} \,\right)\] for any vectors $\begin{bmatrix}
    \alpha\\
    \beta
    \end{bmatrix}, \begin{bmatrix}
    \alpha’ \\
    \beta’
    \end{bmatrix} \in \R^2$.
  2. \[f\left(\, r\begin{bmatrix}
    \alpha \\
    \beta
    \end{bmatrix} \,\right)=rf\left(\, \begin{bmatrix}
    \alpha \\
    \beta
    \end{bmatrix}\,\right)\] for any vector $\begin{bmatrix}
    \alpha\\
    \beta
    \end{bmatrix} \in \R^2$ and any scalar $r\in \R$.

For any vectors $\begin{bmatrix}
\alpha\\
\beta
\end{bmatrix}, \begin{bmatrix}
\alpha’ \\
\beta’
\end{bmatrix} \in \R^2$, we have
\begin{align*}
\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix}+\begin{bmatrix}
\alpha’ \\
\beta’
\end{bmatrix} \,\right) \,\right)(x)&=
\left(\, f\left(\, \begin{bmatrix}
\alpha+\alpha’ \\
\beta+\beta’
\end{bmatrix} \,\right) \,\right)(x)\\[6pt] &=(\alpha+\alpha’) \cos x + (\beta+\beta’) \sin x\\
&=(\alpha \cos x + \beta \sin x)+(\alpha’\cos x + \beta’ \sin x)\\
&=\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x)+\left(\, f\left(\, \begin{bmatrix}
\alpha’ \\
\beta’
\end{bmatrix} \,\right) \,\right)(x),
\end{align*}
and hence the first property is proved.

For the second one, let $\begin{bmatrix}
\alpha\\
\beta
\end{bmatrix} \in \R^2$ and $r\in \R$.
We have
\begin{align*}
\left(\, f\left(\, r\begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x)&=
\left(\, f\left(\, \begin{bmatrix}
r\alpha \\
r\beta
\end{bmatrix} \,\right) \,\right)(x)\\
&=(r\alpha) \cos x + (r\beta) \sin x\\
&=r(\alpha \cos x + \beta \sin x)\\
&=r\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix}\,\right) \,\right)(x).
\end{align*}
This proves the property 2, and hence the map $f$ is a linear transformation.

(b) Prove that the set $\{\cos x, \sin x\}$ is a basis of the vector space $V$.

It is clear that the set $\{\cos x, \sin x\}$ spans the vector space $V$ by definition. Thus, it suffices to prove that $\{\cos x, \sin x\}$ is a linearly independent set.
Suppose that we have
\[\alpha \cos x + \beta \sin x=0\] for some $\alpha, \beta \in \R$.
This is an equality as vectors in $V$, that is, this equality holds for all $x\in [0, 2\pi]$.

In particular, we substitute $x=0$ and obtain $\alpha=0$.
Also, we substitute $x=\pi/2$ and obtain $\beta=0$.
It follows that $\{\cos x, \sin x\}$ is linearly independent, and hence it is a basis of $V$.

(c) Prove that the kernel $\ker f=\{\mathbf{0}\}$.

If $\begin{bmatrix}
\alpha \\
\beta
\end{bmatrix}\in \ker f$, then we have
\[\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x)=\alpha \cos x + \beta \sin x=0\] for all $x\in [0, 2\pi]$.
As in part (b) this implies that $\alpha=\beta=0$.
Hence we have
\[\begin{bmatrix}
\alpha \\
\beta
\end{bmatrix}=\begin{bmatrix}
0 \\
0
\end{bmatrix}=\mathbf{0},\] and thus we obtain $\ker f=\{\mathbf{0}\}$.

By the isomorphism theorem, we obtain
\[\R^2=\R^2/\{0\}=\R^2/\ker f \cong \im f =V.\]

(d) Prove that the map $g$ is a linear transformation.

Let $\alpha \cos x + \beta \sin x, \alpha’ \cos x + \beta’ \sin x$ be arbitrary vectors in $V$. Then we have
\begin{align*}
&g\left(\, (\alpha \cos x + \beta \sin x)+(\alpha’ \cos x + \beta’ \sin x) \,\right)\\
&=g\left(\, (\alpha+\alpha’) \cos x + (\beta+\beta’) \sin x)\,\right)\\
&=(\beta+\beta’)\cos x-(\alpha+\alpha’) \sin x\\
&=(\beta \cos x -\alpha \sin x)+(\beta’ \cos x -\alpha’ \sin x)\\
&=g(\alpha \cos x + \beta \sin x)+g(\alpha’ \cos x + \beta’ \sin x).
\end{align*}

We also have for any vector $\alpha \cos x + \beta \sin x \in V$ and any scalar $r\in \R$
\begin{align*}
&g\left(\, r(\alpha \cos x + \beta \sin x) \,\right)\\
&=g\left(\, (r\alpha) \cos x + (r\beta) \sin x) \,\right)\\
&=(r\beta)\cos x – (r\alpha)\sin x\\
&=r(\beta\cos x – \alpha\sin x)\\
&=rg(\alpha \cos x + \beta \sin x).
\end{align*}
Therefore $g$ is a linear transformation.

(e) Find the matrix representation of the linear transformation $g$ with respect to the basis $\{\cos x, \sin x\}$.

We have
\begin{align*}
g(\cos x)=-\sin x \text{ and } g(\sin x)=\cos x.
\end{align*}
Thus, the coordinate vectors with respect to the basis $B:=\{\cos x, \sin x\}$ are
\[[g(\cos x)]_B=\begin{bmatrix}
0 \\
-1
\end{bmatrix} \text{ and } [g(\sin x)]_B=\begin{bmatrix}
1 \\
0
\end{bmatrix}.\] It follows that the matrix representation of $g$ is
\[ [\,[g(\cos x)]_B, [g(\sin x)]_B\,]=\begin{bmatrix}
0 & 1\\
-1& 0
\end{bmatrix}.\]

Alternatively, we can write
\[g[\cos x, \sin x]=[\cos x, \sin x] \begin{bmatrix}
0 & 1\\
-1& 0
\end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

  • Idempotent Matrices are DiagonalizableIdempotent Matrices are Diagonalizable Let $A$ be an $n\times n$ idempotent matrix, that is, $A^2=A$. Then prove that $A$ is diagonalizable.   We give three proofs of this problem. The first one proves that $\R^n$ is a direct sum of eigenspaces of $A$, hence $A$ is diagonalizable. The second proof proves […]
  • Null Space, Nullity, Range, Rank of a Projection Linear TransformationNull Space, Nullity, Range, Rank of a Projection Linear Transformation Let $\mathbf{u}=\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $T:\R^3 \to \R^3$ be the linear transformation \[T(\mathbf{x})=\proj_{\mathbf{u}}\mathbf{x}=\left(\, \frac{\mathbf{u}\cdot \mathbf{x}}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}.\] (a) […]
  • Find a Linear Transformation Whose Image (Range) is a Given SubspaceFind a Linear Transformation Whose Image (Range) is a Given Subspace Let $V$ be the subspace of $\R^4$ defined by the equation \[x_1-x_2+2x_3+6x_4=0.\] Find a linear transformation $T$ from $\R^3$ to $\R^4$ such that the null space $\calN(T)=\{\mathbf{0}\}$ and the range $\calR(T)=V$. Describe $T$ by its matrix […]
  • Show the Subset of the Vector Space of Polynomials is a Subspace and Find its BasisShow the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient. Let $W$ be the following subset of $P_3$. \[W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.\] Here $p'(x)$ is the first derivative of $p(x)$ and […]
  • Differentiation is a Linear TransformationDifferentiation is a Linear Transformation Let $P_3$ be the vector space of polynomials of degree $3$ or less with real coefficients. (a) Prove that the differentiation is a linear transformation. That is, prove that the map $T:P_3 \to P_3$ defined by \[T\left(\, f(x) \,\right)=\frac{d}{dx} f(x)\] for any $f(x)\in […]
  • Differentiating Linear Transformation is NilpotentDifferentiating Linear Transformation is Nilpotent Let $P_n$ be the vector space of all polynomials with real coefficients of degree $n$ or less. Consider the differentiation linear transformation $T: P_n\to P_n$ defined by \[T\left(\, f(x) \,\right)=\frac{d}{dx}f(x).\] (a) Consider the case $n=2$. Let $B=\{1, x, x^2\}$ be a […]
  • Quiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null SpaceQuiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null Space (a) Let $A=\begin{bmatrix} 1 & 2 & 1 \\ 3 &6 &4 \end{bmatrix}$ and let \[\mathbf{a}=\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix} 1 \\ 1 […]
  • Row Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a MatrixRow Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a Matrix Let \[A=\begin{bmatrix} 1 & 1 & 2 \\ 2 &2 &4 \\ 2 & 3 & 5 \end{bmatrix}.\] (a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$. (b) Find a basis for the null space of $A$. (c) Find a basis for the range of $A$ that […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra Problems and Solutions
Differentiation is a Linear Transformation

Let $P_3$ be the vector space of polynomials of degree $3$ or less with real coefficients. (a) Prove that the...

Close