# kyoto-univerisity-exam-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Linear Transformation and a Basis of the Vector Space $\R^3$ Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$. Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$. Show […]
- Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$ Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$. Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$. (a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ […]
- Application of Field Extension to Linear Combination Consider the cubic polynomial $f(x)=x^3-x+1$ in $\Q[x]$. Let $\alpha$ be any real root of $f(x)$. Then prove that $\sqrt{2}$ can not be written as a linear combination of $1, \alpha, \alpha^2$ with coefficients in $\Q$. Proof. We first prove that the polynomial […]
- Find a Basis and Determine the Dimension of a Subspace of All Polynomials of Degree $n$ or Less Let $P_n(\R)$ be the vector space over $\R$ consisting of all degree $n$ or less real coefficient polynomials. Let \[U=\{ p(x) \in P_n(\R) \mid p(1)=0\}\] be a subspace of $P_n(\R)$. Find a basis for $U$ and determine the dimension of $U$. Solution. […]
- Determine Bases for Nullspaces $\calN(A)$ and $\calN(A^{T}A)$ Determine bases for $\calN(A)$ and $\calN(A^{T}A)$ when \[ A= \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} . \] Then, determine the ranks and nullities of the matrices $A$ and $A^{\trans}A$. Solution. We will first […]
- Show that the Given 2 by 2 Matrix is Singular Consider the matrix $M = \begin{bmatrix} 1 & 4 \\ 3 & 12 \end{bmatrix}$. (a) Show that $M$ is singular. (b) Find a non-zero vector $\mathbf{v}$ such that $M \mathbf{v} = \mathbf{0}$, where $\mathbf{0}$ is the $2$-dimensional zero vector. Solution. (a) Show […]
- Determine Whether Each Set is a Basis for $\R^3$ Determine whether each of the following sets is a basis for $\R^3$. (a) $S=\left\{\, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} […]
- If Generators $x, y$ Satisfy the Relation $xy^2=y^3x$, $yx^2=x^3y$, then the Group is Trivial Let $x, y$ be generators of a group $G$ with relation \begin{align*} xy^2=y^3x,\tag{1}\\ yx^2=x^3y.\tag{2} \end{align*} Prove that $G$ is the trivial group. Proof. From the relation (1), we […]