# system-of-linear-equations-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Write a Vector as a Linear Combination of Three Vectors Write the vector $\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$ as a linear combination of the vectors \[\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} , \, \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} , \, \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}.\] Solution. We want to find […]
- Example of an Element in the Product of Ideals that Cannot be Written as the Product of Two Elements Let $I=(x, 2)$ and $J=(x, 3)$ be ideal in the ring $\Z[x]$. (a) Prove that $IJ=(x, 6)$. (b) Prove that the element $x\in IJ$ cannot be written as $x=f(x)g(x)$, where $f(x)\in I$ and $g(x)\in J$. Hint. If $I=(a_1,\dots, a_m)$ and $J=(b_1, \dots, b_n)$ are […]
- The Matrix Representation of the Linear Transformation $T (f) (x) = ( x^2 – 2) f(x)$ Let $\mathrm{P}_n$ be the vector space of polynomials of degree at most $n$. The set $B = \{ 1 , x , x^2 , \cdots , x^n \}$ is a basis of $\mathrm{P}_n$, called the standard basis. Let $T : \mathrm{P}_3 \rightarrow \mathrm{P}_{5}$ be the map defined by, for $f \in […]
- Every $n$-Dimensional Vector Space is Isomorphic to the Vector Space $\R^n$ Let $V$ be a vector space over the field of real numbers $\R$. Prove that if the dimension of $V$ is $n$, then $V$ is isomorphic to $\R^n$. Proof. Since $V$ is an $n$-dimensional vector space, it has a basis \[B=\{\mathbf{v}_1, \dots, […]
- If matrix product $AB$ is a square, then is $BA$ a square matrix? Let $A$ and $B$ are matrices such that the matrix product $AB$ is defined and $AB$ is a square matrix. Is it true that the matrix product $BA$ is also defined and $BA$ is a square matrix? If it is true, then prove it. If not, find a […]
- Boolean Rings Do Not Have Nonzero Nilpotent Elements Let $R$ be a commutative ring with $1$ such that every element $x$ in $R$ is idempotent, that is, $x^2=x$. (Such a ring is called a Boolean ring.) (a) Prove that $x^n=x$ for any positive integer $n$. (b) Prove that $R$ does not have a nonzero nilpotent […]
- Find the Largest Prime Number Less than One Million. Find the largest prime number less than one million. What is a prime number? A natural number is called a "prime number" if it is only divisible by $1$ and itself. For example, $2, 3, 5, 7$ are prime numbers, although the numbers $4,6,9$ are not. The prime numbers have always […]
- Matrix of Linear Transformation with respect to a Basis Consisting of Eigenvectors Let $T$ be the linear transformation from the vector space $\R^2$ to $\R^2$ itself given by \[T\left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right)= \begin{bmatrix} 3x_1+x_2 \\ x_1+3x_2 \end{bmatrix}.\] (a) Verify that the […]