system-of-linear-equations-eye-catch

LoadingAdd to solve later

The possibilities for the solution set of a system of linear equations


LoadingAdd to solve later

Sponsored Links

More from my site

  • Number Theoretical Problem Proved by Group Theory. $a^{2^n}+b^{2^n}\equiv 0 \pmod{p}$ Implies $2^{n+1}|p-1$.Number Theoretical Problem Proved by Group Theory. $a^{2^n}+b^{2^n}\equiv 0 \pmod{p}$ Implies $2^{n+1}|p-1$. Let $a, b$ be relatively prime integers and let $p$ be a prime number. Suppose that we have \[a^{2^n}+b^{2^n}\equiv 0 \pmod{p}\] for some positive integer $n$. Then prove that $2^{n+1}$ divides $p-1$.   Proof. Since $a$ and $b$ are relatively prime, at least one […]
  • Overall Fraction of Defective Smartphones of Three FactoriesOverall Fraction of Defective Smartphones of Three Factories A certain model of smartphone is manufactured by three factories A, B, and C. Factories A, B, and C produce $60\%$, $25\%$, and $15\%$ of the smartphones, respectively. Suppose that their defective rates are $5\%$, $2\%$, and $7\%$, respectively. Determine the overall fraction of […]
  • The Transpose of a Nonsingular Matrix is NonsingularThe Transpose of a Nonsingular Matrix is Nonsingular Let $A$ be an $n\times n$ nonsingular matrix. Prove that the transpose matrix $A^{\trans}$ is also nonsingular.   Definition (Nonsingular Matrix). By definition, $A^{\trans}$ is a nonsingular matrix if the only solution to […]
  • Given the Data of Eigenvalues, Determine if the Matrix is InvertibleGiven the Data of Eigenvalues, Determine if the Matrix is Invertible In each of the following cases, can we conclude that $A$ is invertible? If so, find an expression for $A^{-1}$ as a linear combination of positive powers of $A$. If $A$ is not invertible, explain why not. (a) The matrix $A$ is a $3 \times 3$ matrix with eigenvalues $\lambda=i , […]
  • A Group Homomorphism and an Abelian GroupA Group Homomorphism and an Abelian Group Let $G$ be a group. Define a map $f:G \to G$ by sending each element $g \in G$ to its inverse $g^{-1} \in G$. Show that $G$ is an abelian group if and only if the map $f: G\to G$ is a group homomorphism.   Proof. $(\implies)$ If $G$ is an abelian group, then $f$ […]
  • Powers of a Diagonal MatrixPowers of a Diagonal Matrix Let $A=\begin{bmatrix} a & 0\\ 0& b \end{bmatrix}$. Show that (1) $A^n=\begin{bmatrix} a^n & 0\\ 0& b^n \end{bmatrix}$ for any $n \in \N$. (2) Let $B=S^{-1}AS$, where $S$ be an invertible $2 \times 2$ matrix. Show that $B^n=S^{-1}A^n S$ for any $n \in […]
  • The Additive Group of Rational Numbers and The Multiplicative Group of Positive Rational Numbers are Not IsomorphicThe Additive Group of Rational Numbers and The Multiplicative Group of Positive Rational Numbers are Not Isomorphic Let $(\Q, +)$ be the additive group of rational numbers and let $(\Q_{ > 0}, \times)$ be the multiplicative group of positive rational numbers. Prove that $(\Q, +)$ and $(\Q_{ > 0}, \times)$ are not isomorphic as groups.   Proof. Suppose, towards a […]
  • 5 is Prime But 7 is Not Prime in the Ring $\Z[\sqrt{2}]$5 is Prime But 7 is Not Prime in the Ring $\Z[\sqrt{2}]$ In the ring \[\Z[\sqrt{2}]=\{a+\sqrt{2}b \mid a, b \in \Z\},\] show that $5$ is a prime element but $7$ is not a prime element.   Hint. An element $p$ in a ring $R$ is prime if $p$ is non zero, non unit element and whenever $p$ divide $ab$ for $a, b \in R$, then $p$ […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.