Possibilities For the Number of Solutions for a Linear System
Determine whether the following systems of equations (or matrix equations) described below has no solution, one unique solution or infinitely many solutions and justify your answer.
(a) \[\left\{
\begin{array}{c}
ax+by=c \\
dx+ey=f,
\end{array}
\right.
\]
where $a,b,c, d$ […]

Find a Linear Transformation Whose Image (Range) is a Given Subspace
Let $V$ be the subspace of $\R^4$ defined by the equation
\[x_1-x_2+2x_3+6x_4=0.\]
Find a linear transformation $T$ from $\R^3$ to $\R^4$ such that the null space $\calN(T)=\{\mathbf{0}\}$ and the range $\calR(T)=V$. Describe $T$ by its matrix […]

If a Matrix $A$ is Full Rank, then $\rref(A)$ is the Identity Matrix
Prove that if $A$ is an $n \times n$ matrix with rank $n$, then $\rref(A)$ is the identity matrix.
Here $\rref(A)$ is the matrix in reduced row echelon form that is row equivalent to the matrix $A$.
Proof.
Because $A$ has rank $n$, we know that the $n \times n$ […]

Normal Subgroups Intersecting Trivially Commute in a Group
Let $A$ and $B$ be normal subgroups of a group $G$. Suppose $A\cap B=\{e\}$, where $e$ is the unit element of the group $G$.
Show that for any $a \in A$ and $b \in B$ we have $ab=ba$.
Hint.
Consider the commutator of $a$ and $b$, that […]

Restriction of a Linear Transformation on the x-z Plane is a Linear Transformation
Let $T:\R^3 \to \R^3$ be a linear transformation and suppose that its matrix representation with respect to the standard basis is given by the matrix
\[A=\begin{bmatrix}
1 & 0 & 2 \\
0 &3 &0 \\
4 & 0 & 5
\end{bmatrix}.\]
(a) Prove that the linear transformation […]

If the Augmented Matrix is Row-Equivalent to the Identity Matrix, is the System Consistent?
Consider the following system of linear equations:
\begin{align*}
ax_1+bx_2 &=c\\
dx_1+ex_2 &=f\\
gx_1+hx_2 &=i.
\end{align*}
(a) Write down the augmented matrix.
(b) Suppose that the augmented matrix is row equivalent to the identity matrix. Is the system consistent? […]