# univeristy-of-tokyo-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Find All the Square Roots of a Given 2 by 2 Matrix Let $A$ be a square matrix. A matrix $B$ satisfying $B^2=A$ is call a square root of $A$. Find all the square roots of the matrix \[A=\begin{bmatrix} 2 & 2\\ 2& 2 \end{bmatrix}.\] Proof. Diagonalize $A$. We first diagonalize the matrix […]
- Eigenvalues of Similarity Transformations Let $A$ be an $n\times n$ complex matrix. Let $S$ be an invertible matrix. (a) If $SAS^{-1}=\lambda A$ for some complex number $\lambda$, then prove that either $\lambda^n=1$ or $A$ is a singular matrix. (b) If $n$ is odd and $SAS^{-1}=-A$, then prove that $0$ is an […]
- Group of Order 18 is Solvable Let $G$ be a finite group of order $18$. Show that the group $G$ is solvable. Definition Recall that a group $G$ is said to be solvable if $G$ has a subnormal series \[\{e\}=G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n=G\] such […]
- The Ring $\Z[\sqrt{2}]$ is a Euclidean Domain Prove that the ring of integers \[\Z[\sqrt{2}]=\{a+b\sqrt{2} \mid a, b \in \Z\}\] of the field $\Q(\sqrt{2})$ is a Euclidean Domain. Proof. First of all, it is clear that $\Z[\sqrt{2}]$ is an integral domain since it is contained in $\R$. We use the […]
- Eigenvalues and their Algebraic Multiplicities of a Matrix with a Variable Determine all eigenvalues and their algebraic multiplicities of the matrix \[A=\begin{bmatrix} 1 & a & 1 \\ a &1 &a \\ 1 & a & 1 \end{bmatrix},\] where $a$ is a real number. Proof. To find eigenvalues we first compute the characteristic polynomial of the […]
- Find a Nonsingular Matrix Satisfying Some Relation Determine whether there exists a nonsingular matrix $A$ if \[A^2=AB+2A,\] where $B$ is the following matrix. If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$. (a) \[B=\begin{bmatrix} -1 & 1 & -1 \\ 0 &-1 &0 \\ 1 & 2 & […]
- Every Basis of a Subspace Has the Same Number of Vectors Let $V$ be a subspace of $\R^n$. Suppose that $B=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a basis of the subspace $V$. Prove that every basis of $V$ consists of $k$ vectors in $V$. Hint. You may use the following fact: Fact. If […]
- Fundamental Theorem of Finitely Generated Abelian Groups and its application In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem. Problem. Let $G$ be a finite abelian group of order $n$. If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]