# univeristy-of-tokyo-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Special Linear Group is a Normal Subgroup of General Linear Group Let $G=\GL(n, \R)$ be the general linear group of degree $n$, that is, the group of all $n\times n$ invertible matrices. Consider the subset of $G$ defined by \[\SL(n, \R)=\{X\in \GL(n,\R) \mid \det(X)=1\}.\] Prove that $\SL(n, \R)$ is a subgroup of $G$. Furthermore, prove that […]
- If the Quotient by the Center is Cyclic, then the Group is Abelian Let $Z(G)$ be the center of a group $G$. Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian. Steps. Write $G/Z(G)=\langle \bar{g} \rangle$ for some $g \in G$. Any element $x\in G$ can be written as $x=g^a z$ for some $z \in Z(G)$ and $a \in \Z$. Using […]
- Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation (a) Find the inverse matrix of \[A=\begin{bmatrix} 1 & 0 & 1 \\ 1 &0 &0 \\ 2 & 1 & 1 \end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason. (b) Find a nonsingular $2\times 2$ matrix $A$ such that \[A^3=A^2B-3A^2,\] where […]
- The Product of Distinct Sylow $p$-Subgroups Can Never be a Subgroup Let $G$ a finite group and let $H$ and $K$ be two distinct Sylow $p$-group, where $p$ is a prime number dividing the order $|G|$ of $G$. Prove that the product $HK$ can never be a subgroup of the group $G$. Hint. Use the following fact. If $H$ and $K$ […]
- Quiz 13 (Part 2) Find Eigenvalues and Eigenvectors of a Special Matrix Find all eigenvalues of the matrix \[A=\begin{bmatrix} 0 & i & i & i \\ i &0 & i & i \\ i & i & 0 & i \\ i & i & i & 0 \end{bmatrix},\] where $i=\sqrt{-1}$. For each eigenvalue of $A$, determine its algebraic multiplicity and geometric […]
- Determine Eigenvalues, Eigenvectors, Diagonalizable From a Partial Information of a Matrix Suppose the following information is known about a $3\times 3$ matrix $A$. \[A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=6\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 1 \\ -1 \\ 1 […]
- Symmetric Matrices and the Product of Two Matrices Let $A$ and $B$ be $n \times n$ real symmetric matrices. Prove the followings. (a) The product $AB$ is symmetric if and only if $AB=BA$. (b) If the product $AB$ is a diagonal matrix, then $AB=BA$. Hint. A matrix $A$ is called symmetric if $A=A^{\trans}$. In […]
- Linear Transformation $T(X)=AX-XA$ and Determinant of Matrix Representation Let $V$ be the vector space of all $n\times n$ real matrices. Let us fix a matrix $A\in V$. Define a map $T: V\to V$ by \[ T(X)=AX-XA\] for each $X\in V$. (a) Prove that $T:V\to V$ is a linear transformation. (b) Let $B$ be a basis of $V$. Let $P$ be the matrix […]