# Tagged: center

## Problem 246

Let $H$ be a subgroup of a group $G$. We call $H$ characteristic in $G$ if for any automorphism $\sigma\in \Aut(G)$ of $G$, we have $\sigma(H)=H$.

(a) Prove that if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$.

(b) Prove that the center $Z(G)$ of $G$ is characteristic in $G$.

## Problem 209

Let $G$ be a group. We fix an element $x$ of $G$ and define a map
$\Psi_x: G\to G$ by mapping $g\in G$ to $xgx^{-1} \in G$.
Then prove the followings.
(a) The map $\Psi_x$ is a group homomorphism.

(b) The map $\Psi_x=\id$ if and only if $x\in Z(G)$, where $Z(G)$ is the center of the group $G$.

(c) The map $\Psi_y=\id$ for all $y\in G$ if and only if $G$ is an abelian group.

## Problem 124

Let $p$ be a prime number.
Let $G$ be a non-abelian $p$-group.
Show that the index of the center of $G$ is divisible by $p^2$.

## Problem 94

Let $H$ be a subgroup of order $2$. Let $N_G(H)$ be the normalizer of $H$ in $G$ and $C_G(H)$ be the centralizer of $H$ in $G$.

(a) Show that $N_G(H)=C_G(H)$.

(b) If $H$ is a normal subgroup of $G$, then show that $H$ is a subgroup of the center $Z(G)$ of $G$.
Let $G$ be a group of order $|G|=p^n$ for some $n \in \N$.
(Such a group is called a $p$-group.)
Show that the center $Z(G)$ of the group $G$ is not trivial.