Tagged: centralizer

The Order of a Conjugacy Class Divides the Order of the Group

Problem 455

Let $G$ be a finite group.
The centralizer of an element $a$ of $G$ is defined to be
\[C_G(a)=\{g\in G \mid ga=ag\}.\]

A conjugacy class is a set of the form
\[\Cl(a)=\{bab^{-1} \mid b\in G\}\] for some $a\in G$.


(a) Prove that the centralizer of an element of $a$ in $G$ is a subgroup of the group $G$.

(b) Prove that the order (the number of elements) of every conjugacy class in $G$ divides the order of the group $G$.

 
Read solution

LoadingAdd to solve later

Centralizer, Normalizer, and Center of the Dihedral Group $D_{8}$

Problem 53

Let $D_8$ be the dihedral group of order $8$.
Using the generators and relations, we have
\[D_{8}=\langle r,s \mid r^4=s^2=1, sr=r^{-1}s\rangle.\]

(a) Let $A$ be the subgroup of $D_8$ generated by $r$, that is, $A=\{1,r,r^2,r^3\}$.
Prove that the centralizer $C_{D_8}(A)=A$.

(b) Show that the normalizer $N_{D_8}(A)=D_8$.

(c) Show that the center $Z(D_8)=\langle r^2 \rangle=\{1,r^2\}$, the subgroup generated by $r^2$.

Read solution

LoadingAdd to solve later