Tagged: cofactor expansion

Compute the Determinant of a Magic Square

Problem 718

Let
\[
A=
\begin{bmatrix}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{bmatrix}
.
\] Notice that $A$ contains every integer from $1$ to $9$ and that the sums of each row, column, and diagonal of $A$ are equal. Such a grid is sometimes called a magic square.

Compute the determinant of $A$.

 
Read solution

LoadingAdd to solve later

Find Inverse Matrices Using Adjoint Matrices

Problem 546

Let $A$ be an $n\times n$ matrix.

The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be
\[C_{ij}=(-1)^{ij}\det(M_{ij}),\] where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column.

Then consider the $n\times n$ matrix $C=(C_{ij})$, and define the $n\times n$ matrix $\Adj(A)=C^{\trans}$.
The matrix $\Adj(A)$ is called the adjoint matrix of $A$.

When $A$ is invertible, then its inverse can be obtained by the formula

\[A^{-1}=\frac{1}{\det(A)}\Adj(A).\]

For each of the following matrices, determine whether it is invertible, and if so, then find the invertible matrix using the above formula.

(a) $A=\begin{bmatrix}
1 & 5 & 2 \\
0 &-1 &2 \\
0 & 0 & 1
\end{bmatrix}$.

 
(b) $B=\begin{bmatrix}
1 & 0 & 2 \\
0 &1 &4 \\
3 & 0 & 1
\end{bmatrix}$.

 
Read solution

LoadingAdd to solve later

Determine Whether There Exists a Nonsingular Matrix Satisfying $A^4=ABA^2+2A^3$

Problem 486

Determine whether there exists a nonsingular matrix $A$ if
\[A^4=ABA^2+2A^3,\] where $B$ is the following matrix.
\[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
2 & 1 & -4
\end{bmatrix}.\]

If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.

(The Ohio State University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Rotation Matrix in Space and its Determinant and Eigenvalues

Problem 218

For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
\[A=\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}.\]

(a) Find the determinant of the matrix $A$.

(b) Show that $A$ is an orthogonal matrix.

(c) Find the eigenvalues of $A$.

 
Read solution

LoadingAdd to solve later

Maximize the Dimension of the Null Space of $A-aI$

Problem 200

Let
\[ A=\begin{bmatrix}
5 & 2 & -1 \\
2 &2 &2 \\
-1 & 2 & 5
\end{bmatrix}.\]

Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix.

Your score of this problem is equal to that dimension times five.

(The Ohio State University Linear Algebra Practice Problem)
 
Read solution

LoadingAdd to solve later

Find Values of $h$ so that the Given Vectors are Linearly Independent

Problem 194

Find the value(s) of $h$ for which the following set of vectors
\[\left \{ \mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
h \\
1 \\
-h
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
1 \\
2h \\
3h+1
\end{bmatrix}\right\}\] is linearly independent.

(Boston College, Linear Algebra Midterm Exam Sample Problem)
 
Read solution

LoadingAdd to solve later

Compute Determinant of a Matrix Using Linearly Independent Vectors

Problem 193

Let $A$ be a $3 \times 3$ matrix.
Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have
\[A\mathbf{x}=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, A\mathbf{y}=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, A\mathbf{z}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}.\]

Then find the value of the determinant of the matrix $A$.

 
Read solution

LoadingAdd to solve later

Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam)

Problem 178

Let
\[\begin{bmatrix}
0 & 0 & 1 \\
1 &0 &0 \\
0 & 1 & 0
\end{bmatrix}.\]

(a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers?

(b) Calculate $A^{2009}$.

(Princeton University, Linear Algebra Exam)
 
Read solution

LoadingAdd to solve later

Companion Matrix for a Polynomial

Problem 85

Consider a polynomial
\[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\] where $a_i$ are real numbers.
Define the matrix
\[A=\begin{bmatrix}
0 & 0 & \dots & 0 &-a_0 \\
1 & 0 & \dots & 0 & -a_1 \\
0 & 1 & \dots & 0 & -a_2 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & 1 & -a_{n-1}
\end{bmatrix}.\]

Then prove that the characteristic polynomial $\det(xI-A)$ of $A$ is the polynomial $p(x)$.
The matrix is called the companion matrix of the polynomial $p(x)$.

 

Read solution

LoadingAdd to solve later

Calculate Determinants of Matrices

Problem 45

Calculate the determinants of the following $n\times n$ matrices.
\[A=\begin{bmatrix}
1 & 0 & 0 & \dots & 0 & 0 &1 \\
1 & 1 & 0 & \dots & 0 & 0 & 0 \\
0 & 1 & 1 & \dots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \dots & \dots & \ddots & \vdots \\
0 & 0 & 0 &\dots & 1 & 1 & 0\\
0 & 0 & 0 &\dots & 0 & 1 & 1
\end{bmatrix}\]

The entries of $A$ is $1$ at the diagonal entries, entries below the diagonal, and $(1, n)$-entry.
The other entries are zero.
\[B=\begin{bmatrix}
1 & 0 & 0 & \dots & 0 & 0 & -1 \\
-1 & 1 & 0 & \dots & 0 & 0 & 0 \\
0 & -1 & 1 & \dots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \dots & \dots & \ddots & \vdots \\
0 & 0 & 0 &\dots & -1 & 1 & 0\\
0 & 0 & 0 &\dots & 0 & -1 & 1
\end{bmatrix}.\]

The entries of $B$ is $1$ at the diagonal entries.
The entries below the diagonal and $(1,n)$-entry are $-1$.
The other entries are zero.

Read solution

LoadingAdd to solve later