Tagged: cyclic group

Group Homomorphism from $\Z/n\Z$ to $\Z/m\Z$ When $m$ Divides $n$

Problem 613

Let $m$ and $n$ be positive integers such that $m \mid n$.

(a) Prove that the map $\phi:\Zmod{n} \to \Zmod{m}$ sending $a+n\Z$ to $a+m\Z$ for any $a\in \Z$ is well-defined.

(b) Prove that $\phi$ is a group homomorphism.

(c) Prove that $\phi$ is surjective.

(d) Determine the group structure of the kernel of $\phi$.

 
Read solution

LoadingAdd to solve later

Prove that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse Elements

Problem 529

Let $\F_3=\Zmod{3}$ be the finite field of order $3$.
Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal $I=(x^2+1)$ generated by $x^2+1\in \F_3[x]$.

(a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field. How many elements does the field have?

(b) Let $ax+b+I$ be a nonzero element of the field $\F_3[x]/(x^2+1)$, where $a, b \in \F_3$. Find the inverse of $ax+b+I$.

(c) Recall that the multiplicative group of nonzero elements of a field is a cyclic group.

Confirm that the element $x$ is not a generator of $E^{\times}$, where $E=\F_3[x]/(x^2+1)$ but $x+1$ is a generator.

 
Read solution

LoadingAdd to solve later

A Module is Irreducible if and only if It is a Cyclic Module With Any Nonzero Element as Generator

Problem 434

Let $R$ be a ring with $1$.
A nonzero $R$-module $M$ is called irreducible if $0$ and $M$ are the only submodules of $M$.
(It is also called a simple module.)

(a) Prove that a nonzero $R$-module $M$ is irreducible if and only if $M$ is a cyclic module with any nonzero element as its generator.

(b) Determine all the irreducible $\Z$-modules.

 
Read solution

LoadingAdd to solve later

Fundamental Theorem of Finitely Generated Abelian Groups and its application

Problem 420

In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.

Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic to the cyclic group $Z_n=\Zmod{n}$ of order $n$.

 
Read solution

LoadingAdd to solve later

Generators of the Augmentation Ideal in a Group Ring

Problem 302

Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by
\[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\] where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring homomorphism, called the augmentation map and the kernel of $\epsilon$ is called the augmentation ideal.

(a) Prove that the augmentation ideal in the group ring $RG$ is generated by $\{g-e \mid g\in G\}$.

(b) Prove that if $G=\langle g\rangle$ is a finite cyclic group generated by $g$, then the augmentation ideal is generated by $g-e$.
 
Read solution

LoadingAdd to solve later