# Tagged: domain

## Problem 351

Let $R$ be a commutative ring with unity.
Then show that every maximal ideal of $R$ is a prime ideal. Add to solve later

## Problem 239

Let $R$ be an integral domain. Then prove that the ideal $(x^3-y^2)$ is a prime ideal in the ring $R[x, y]$. Add to solve later

## Problem 228

Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$. Add to solve later

## Problem 198

Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain.

Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a field. Add to solve later

## Problem 192

Show that any finite integral domain $R$ is a field. Add to solve later
Let $R$ be a principal ideal domain (PID) and let $P$ be a nonzero prime ideal in $R$.
Show that $P$ is a maximal ideal in $R$. Add to solve later