Tagged: elementary row operation

Problem 394

Determine the values of $x$ so that the matrix
$A=\begin{bmatrix} 1 & 1 & x \\ 1 &x &x \\ x & x & x \end{bmatrix}$ is invertible.
For those values of $x$, find the inverse matrix $A^{-1}$.

Problem 152

Let $V$ be the vector space of all $2\times 2$ matrices, and let the subset $S$ of $V$ be defined by $S=\{A_1, A_2, A_3, A_4\}$, where
\begin{align*}
A_1=\begin{bmatrix}
1 & 2 \\
-1 & 3
A_2=\begin{bmatrix}
0 & -1 \\
1 & 4
A_3=\begin{bmatrix}
-1 & 0 \\
1 & -10
A_4=\begin{bmatrix}
3 & 7 \\
-2 & 6
\end{bmatrix}.
\end{align*}
Find a basis of the span $\Span(S)$ consisting of vectors in $S$ and find the dimension of $\Span(S)$.

Problem 138

Find the determinant of the matix
$A=\begin{bmatrix} 100 & 101 & 102 \\ 101 &102 &103 \\ 102 & 103 & 104 \end{bmatrix}.$

Problem 102

Determine whether the following systems of equations (or matrix equations) described below has no solution, one unique solution or infinitely many solutions and justify your answer.

(a) $\left\{ \begin{array}{c} ax+by=c \\ dx+ey=f, \end{array} \right.$ where $a,b,c, d$ are scalars satisfying $a/d=b/e=c/f$.

(b) $A \mathbf{x}=\mathbf{0}$, where $A$ is a singular matrix.

(c) A homogeneous system of $3$ equations in $4$ unknowns.

(d) $A\mathbf{x}=\mathbf{b}$, where the row-reduced echelon form of the augmented matrix $[A|\mathbf{b}]$ looks as follows:
$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 &1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$ (The Ohio State University, Linear Algebra Exam)
Find a basis for the subspace $W$ of all vectors in $\R^4$ which are perpendicular to the columns of the matrix
$A=\begin{bmatrix} 11 & 12 & 13 & 14 \\ 21 &22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \end{bmatrix}.$