Tagged: exam

Subspace Spanned By Cosine and Sine Functions

Problem 435

Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$.
Define the map $f:\R^2 \to \calF[0, 2\pi]$ by
\[\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta \sin x.\] We put
\[V:=\im f=\{\alpha \cos x + \beta \sin x \in \calF[0, 2\pi] \mid \alpha, \beta \in \R\}.\]

(a) Prove that the map $f$ is a linear transformation.

(b) Prove that the set $\{\cos x, \sin x\}$ is a basis of the vector space $V$.

(c) Prove that the kernel is trivial, that is, $\ker f=\{\mathbf{0}\}$.
(This yields an isomorphism of $\R^2$ and $V$.)

(d) Define a map $g:V \to V$ by
\[g(\alpha \cos x + \beta \sin x):=\frac{d}{dx}(\alpha \cos x+ \beta \sin x)=\beta \cos x -\alpha \sin x.\] Prove that the map $g$ is a linear transformation.

(e) Find the matrix representation of the linear transformation $g$ with respect to the basis $\{\cos x, \sin x\}$.

(Kyoto University, Linear Algebra exam problem)

 
Read solution

LoadingAdd to solve later

Trace, Determinant, and Eigenvalue (Harvard University Exam Problem)

Problem 389

(a) A $2 \times 2$ matrix $A$ satisfies $\tr(A^2)=5$ and $\tr(A)=3$.
Find $\det(A)$.

(b) A $2 \times 2$ matrix has two parallel columns and $\tr(A)=5$. Find $\tr(A^2)$.

(c) A $2\times 2$ matrix $A$ has $\det(A)=5$ and positive integer eigenvalues. What is the trace of $A$?

(Harvard University, Linear Algebra Exam Problem)

 
Read solution

LoadingAdd to solve later

Determine Dimensions of Eigenspaces From Characteristic Polynomial of Diagonalizable Matrix

Problem 384

Let $A$ be an $n\times n$ matrix with the characteristic polynomial
\[p(t)=t^3(t-1)^2(t-2)^5(t+2)^4.\] Assume that the matrix $A$ is diagonalizable.

(a) Find the size of the matrix $A$.

(b) Find the dimension of the eigenspace $E_2$ corresponding to the eigenvalue $\lambda=2$.

(c) Find the nullity of $A$.

(The Ohio State University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Common Eigenvector of Two Matrices $A, B$ is Eigenvector of $A+B$ and $AB$.

Problem 382

Let $\lambda$ be an eigenvalue of $n\times n$ matrices $A$ and $B$ corresponding to the same eigenvector $\mathbf{x}$.

(a) Show that $2\lambda$ is an eigenvalue of $A+B$ corresponding to $\mathbf{x}$.

(b) Show that $\lambda^2$ is an eigenvalue of $AB$ corresponding to $\mathbf{x}$.

(The Ohio State University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like.

Problem 381

Consider the matrix
\[A=\begin{bmatrix}
3/2 & 2\\
-1& -3/2
\end{bmatrix} \in M_{2\times 2}(\R).\]

(a) Find the eigenvalues and corresponding eigenvectors of $A$.

(b) Show that for $\mathbf{v}=\begin{bmatrix}
1 \\
0
\end{bmatrix}\in \R^2$, we can choose $n$ large enough so that the length $\|A^n\mathbf{v}\|$ is as small as we like.

(University of California, Berkeley, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Find Matrix Representation of Linear Transformation From $\R^2$ to $\R^2$

Problem 370

Let $T: \R^2 \to \R^2$ be a linear transformation such that
\[T\left(\, \begin{bmatrix}
1 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
4 \\
1
\end{bmatrix}, T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
3 \\
2
\end{bmatrix}.\] Then find the matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for every $\mathbf{x}\in \R^2$, and find the rank and nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Rank and Nullity of Linear Transformation From $\R^3$ to $\R^2$

Problem 369

Let $T:\R^3 \to \R^2$ be a linear transformation such that
\[ T(\mathbf{e}_1)=\begin{bmatrix}
1 \\
0
\end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix}
0 \\
1
\end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix}
1 \\
0
\end{bmatrix},\] where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are the standard basis of $\R^3$.
Then find the rank and the nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Determine a Value of Linear Transformation From $\R^3$ to $\R^2$

Problem 368

Let $T$ be a linear transformation from $\R^3$ to $\R^2$ such that
\[ T\left(\, \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}\,\right) =\begin{bmatrix}
1 \\
2
\end{bmatrix} \text{ and }T\left(\, \begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}\,\right)=\begin{bmatrix}
0 \\
1
\end{bmatrix}. \] Then find $T\left(\, \begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \,\right)$.

 
(The Ohio State University, Linear Algebra Exam Problem)
Read solution

LoadingAdd to solve later

Basis of Span in Vector Space of Polynomials of Degree 2 or Less

Problem 367

Let $P_2$ be the vector space of all polynomials of degree $2$ or less with real coefficients.
Let
\[S=\{1+x+2x^2, \quad x+2x^2, \quad -1, \quad x^2\}\] be the set of four vectors in $P_2$.

Then find a basis of the subspace $\Span(S)$ among the vectors in $S$.

(Linear Algebra Exam Problem, the Ohio State University)
 
Read solution

LoadingAdd to solve later

Determine Whether Trigonometry Functions $\sin^2(x), \cos^2(x), 1$ are Linearly Independent or Dependent

Problem 365

Let $f(x)=\sin^2(x)$, $g(x)=\cos^2(x)$, and $h(x)=1$. These are vectors in $C[-1, 1]$.
Determine whether the set $\{f(x), \, g(x), \, h(x)\}$ is linearly dependent or linearly independent.

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

True or False Problems of Vector Spaces and Linear Transformations

Problem 364

These are True or False problems.
For each of the following statements, determine if it contains a wrong information or not.

  1. Let $A$ be a $5\times 3$ matrix. Then the range of $A$ is a subspace in $\R^3$.
  2. The function $f(x)=x^2+1$ is not in the vector space $C[-1,1]$ because $f(0)=1\neq 0$.
  3. Since we have $\sin(x+y)=\sin(x)+\sin(y)$, the function $\sin(x)$ is a linear transformation.
  4. The set
    \[\left\{\, \begin{bmatrix}
    1 \\
    0 \\
    0
    \end{bmatrix}, \begin{bmatrix}
    0 \\
    1 \\
    1
    \end{bmatrix} \,\right\}\] is an orthonormal set.

(Linear Algebra Exam Problem, The Ohio State University)

 
Read solution

LoadingAdd to solve later

If Column Vectors Form Orthonormal set, is Row Vectors Form Orthonormal Set?

Problem 317

Suppose that $A$ is a real $n\times n$ matrix.

(a) Is it true that $A$ must commute with its transpose?

(b) Suppose that the columns of $A$ (considered as vectors) form an orthonormal set.
Is it true that the rows of $A$ must also form an orthonormal set?

(University of California, Berkeley, Linear Algebra Qualifying Exam)

 
Read solution

LoadingAdd to solve later

Given a Spanning Set of the Null Space of a Matrix, Find the Rank

Problem 303

Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors
\[\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}, \text{ and } \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}.\] Then find the rank of the matrix $A$.

(Purdue University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Solve a System by the Inverse Matrix and Compute $A^{2017}\mathbf{x}$

Problem 300

Let $A$ be the coefficient matrix of the system of linear equations
\begin{align*}
-x_1-2x_2&=1\\
2x_1+3x_2&=-1.
\end{align*}

(a) Solve the system by finding the inverse matrix $A^{-1}$.

(b) Let $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$ be the solution of the system obtained in part (a).
Calculate and simplify
\[A^{2017}\mathbf{x}.\]

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later