# Tagged: group

## Problem 112

Let $G$ be a simple group and let $X$ be a finite set.
Suppose $G$ acts nontrivially on $X$. That is, there exist $g\in G$ and $x \in X$ such that $g\cdot x \neq x$.
Then show that $G$ is a finite group and the order of $G$ divides $|X|!$.

## Problem 109

Let $X$ be a subset of a group $G$. Let $C_G(X)$ be the centralizer subgroup of $X$ in $G$.

For any $g \in G$, show that $gC_G(X)g^{-1}=C_G(gXg^{-1})$.

Read solution

## Problem 108

Let $\F_p$ be the finite field of $p$ elements, where $p$ is a prime number.
Let $G_n=\GL_n(\F_p)$ be the group of $n\times n$ invertible matrices with entries in the field $\F_p$. As usual in linear algebra, we may regard the elements of $G_n$ as linear transformations on $\F_p^n$, the $n$-dimensional vector space over $\F_p$. Therefore, $G_n$ acts on $\F_p^n$.

Let $e_n \in \F_p^n$ be the vector $(1,0, \dots,0)$.
(The so-called first standard basis vector in $\F_p^n$.)

Find the size of the $G_n$-orbit of $e_n$, and show that $\Stab_{G_n}(e_n)$ has order $|G_{n-1}|\cdot p^{n-1}$.

Conclude by induction that
$|G_n|=p^{n^2}\prod_{i=1}^{n} \left(1-\frac{1}{p^i} \right).$

## Problem 106

Let $G$ be a finite group of odd order. Assume that $x \in G$ is not the identity element.

Show that $x$ is not conjugate to $x^{-1}$.

Read solution

## Problem 105

Let $G$ be a finite group of order $n$ and suppose that $p$ is the smallest prime number dividing $n$.

Then prove that any subgroup of index $p$ is a normal subgroup of $G$.

Read solution

## Problem 100

Determine whether a group $G$ of the following order is simple or not.

(a) $|G|=100$.
(b) $|G|=200$.

Read solution

## Problem 95

Let $G$ be a finite abelian group of order $mn$, where $m$ and $n$ are relatively prime positive integers.

Then show that there exists unique subgroups $G_1$ of order $m$ and $G_2$ of order $n$ such that $G\cong G_1 \times G_2$.

## Problem 81

Let $G$ be a group of order $|G|=pqr$, where $p,q,r$ are prime numbers such that $p<q<r$.

Show that $G$ has a normal subgroup of order either $p,q$ or $r$.
Read solution

## Sylow’s Theorem (Summary)

In this post we review Sylow’s theorem and as an example we solve the following problem.

## Problem 64

Show that a group of order $200$ has a normal Sylow $5$-subgroup.
Read solution

## Problem 54

Determine all the conjugacy classes of the dihedral group
$D_{8}=\langle r,s \mid r^4=s^2=1, sr=r^{-1}s\rangle$ of order $8$.

## Problem 53

Let $D_8$ be the dihedral group of order $8$.
Using the generators and relations, we have
$D_{8}=\langle r,s \mid r^4=s^2=1, sr=r^{-1}s\rangle.$

(a) Let $A$ be the subgroup of $D_8$ generated by $r$, that is, $A=\{1,r,r^2,r^3\}$.
Prove that the centralizer $C_{D_8}(A)=A$.

(b) Show that the normalizer $N_{D_8}(A)=D_8$.

(c) Show that the center $Z(D_8)=\langle r^2 \rangle=\{1,r^2\}$, the subgroup generated by $r^2$.

## Problem 52

Let $n$ be a positive integer. Let $D_{2n}$ be the dihedral group of order $2n$. Using the generators and the relations, the dihedral group $D_{2n}$ is given by
$D_{2n}=\langle r,s \mid r^n=s^2=1, sr=r^{-1}s\rangle.$ Put $\theta=2 \pi/n$.

(a) Prove that the matrix $\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix}$ is the matrix representation of the linear transformation $T$ which rotates the $x$-$y$ plane about the origin in a counterclockwise direction by $\theta$ radians.

(b) Let $\GL_2(\R)$ be the group of all $2 \times 2$ invertible matrices with real entries. Show that the map $\rho: D_{2n} \to \GL_2(\R)$ defined on the generators by
$\rho(r)=\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix} \text{ and } \rho(s)=\begin{bmatrix} 0 & 1\\ 1& 0 \end{bmatrix}$ extends to a homomorphism of $D_{2n}$ into $\GL_2(\R)$.

(c) Determine whether the homomorphism $\rho$ in part (b) is injective and/or surjective.

## Problem 49

Let $A$ and $B$ be normal subgroups of a group $G$. Suppose $A\cap B=\{e\}$, where $e$ is the unit element of the group $G$.
Show that for any $a \in A$ and $b \in B$ we have $ab=ba$.

## Problem 31

Show that the center $Z(S_n)$ of the symmetric group with $n \geq 3$ is trivial.

## Problem 30

Let $G$ be a group of order $|G|=pq$, where $p$ and $q$ are (not necessarily distinct) prime numbers.

Then show that $G$ is either abelian group or the center $Z(G)=1$.

## Problem 22

### Definition (automorphism).

An isomorphism from a group $G$ to itself is called an automorphism of $G$.
The set of all automorphism is denoted by $\Aut(G)$.

### Definition (characteristic subgroup).

A subgroup $H$ of a group $G$ is called characteristic in $G$ if for any $\phi \in \Aut(G)$, we have $\phi(H)=H$. In words, this means that each automorphism of $G$ maps $H$ to itself.

Prove the followings.

(a) If $H$ is characteristic in $G$, then $H$ is a normal subgroup of $G$.

(b) If $H$ is the unique subgroup of $G$ of a given order, then $H$ is characteristic in $G$.

(c) Suppose that a subgroup $K$ is characteristic in a group $H$ and $H$ is a normal subgroup of $G$. Then $K$ is a normal subgroup in $G$.

## Problem 20

Suppose the order of a group $G$ is $p^2$, where $p$ is a prime number.
Show that

(a) the group $G$ is an abelian group, and

(b) the group $G$ is isomorphic to either $\Zmod{p^2}$ or $\Zmod{p} \times \Zmod{p}$ without using the fundamental theorem of abelian groups.

## Problem 18

Let $Z(G)$ be the center of a group $G$.
Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian.

## Problem 16

Show that any subgroup of index $2$ in a group is a normal subgroup.

## Problem 10

Let $G$ be a group of order $|G|=p^n$ for some $n \in \N$.
(Such a group is called a $p$-group.)

Show that the center $Z(G)$ of the group $G$ is not trivial.