Tagged: homomorphism

Injective Group Homomorphism that does not have Inverse Homomorphism

Problem 443

Let $A=B=\Z$ be the additive group of integers.
Define a map $\phi: A\to B$ by sending $n$ to $2n$ for any integer $n\in A$.

(a) Prove that $\phi$ is a group homomorphism.

(b) Prove that $\phi$ is injective.

(c) Prove that there does not exist a group homomorphism $\psi:B \to A$ such that $\psi \circ \phi=\id_A$.

 
Read solution

LoadingAdd to solve later

Linearly Dependent Module Elements / Module Homomorphism and Linearly Independency

Problem 415

(a) Let $R$ be a commutative ring. If we regard $R$ as a left $R$-module, then prove that any two distinct elements of the module $R$ are linearly dependent.

(b) Let $f: M\to M’$ be a left $R$-module homomorphism. Let $\{x_1, \dots, x_n\}$ be a subset in $M$. Prove that if the set $\{f(x_1), \dots, f(x_n)\}$ is linearly independent, then the set $\{x_1, \dots, x_n\}$ is also linearly independent.
 
Read solution

LoadingAdd to solve later

Generators of the Augmentation Ideal in a Group Ring

Problem 302

Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by
\[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\] where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring homomorphism, called the augmentation map and the kernel of $\epsilon$ is called the augmentation ideal.

(a) Prove that the augmentation ideal in the group ring $RG$ is generated by $\{g-e \mid g\in G\}$.

(b) Prove that if $G=\langle g\rangle$ is a finite cyclic group generated by $g$, then the augmentation ideal is generated by $g-e$.
 
Read solution

LoadingAdd to solve later

The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$

Problem 283

Let $F$ be a field and let
\[H(F)=\left\{\, \begin{bmatrix}
1 & a & b \\
0 &1 &c \\
0 & 0 & 1
\end{bmatrix} \quad \middle| \quad \text{ for any} a,b,c\in F\, \right\}\] be the Heisenberg group over $F$.
(The group operation of the Heisenberg group is matrix multiplication.)

Determine which matrices lie in the center of $H(F)$ and prove that the center $Z\big(H(F)\big)$ is isomorphic to the additive group $F$.

 
Read solution

LoadingAdd to solve later

Eckmann–Hilton Argument: Group Operation is a Group Homomorphism

Problem 268

Let $G$ be a group with the identity element $e$ and suppose that we have a group homomorphism $\phi$ from the direct product $G \times G$ to $G$ satisfying
\[\phi(e, g)=g \text{ and } \phi(g, e)=g, \tag{*}\] for any $g\in G$.

Let $\mu: G\times G \to G$ be a map defined by
\[\mu(g, h)=gh.\] (That is, $\mu$ is the group operation on $G$.)

Then prove that $\phi=\mu$.
Also prove that the group $G$ is abelian.

 
Read solution

LoadingAdd to solve later