Let $R$ be a commutative ring with $1$.
Suppose that the localization $R_{\mathfrak{p}}$ is a Noetherian ring for every prime ideal $\mathfrak{p}$ of $R$.
Is it true that $A$ is also a Noetherian ring?

(a) Let $R$ be an integral domain and let $M$ be a finitely generated torsion $R$-module.
Prove that the module $M$ has a nonzero annihilator.
In other words, show that there is a nonzero element $r\in R$ such that $rm=0$ for all $m\in M$.
Here $r$ does not depend on $m$.

(b) Find an example of an integral domain $R$ and a torsion $R$-module $M$ whose annihilator is the zero ideal.

Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$.
The set of torsion elements is denoted
\[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\]

(a) Prove that if $R$ is an integral domain, then $\Tor(M)$ is a submodule of $M$.
(Remark: an integral domain is a commutative ring by definition.) In this case the submodule $\Tor(M)$ is called torsion submodule of $M$.

(b) Find an example of a ring $R$ and an $R$-module $M$ such that $\Tor(M)$ is not a submodule.

(c) If $R$ has nonzero zero divisors, then show that every nonzero $R$-module has nonzero torsion element.

Let $R$ be a commutative ring. Suppose that $P$ is a prime ideal of $R$ containing no nonzero zero divisor. Then show that the ring $R$ is an integral domain.

Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain.

Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a field.