Tagged: inverse element

Prove that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse Elements

Problem 529

Let $\F_3=\Zmod{3}$ be the finite field of order $3$.
Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal $I=(x^2+1)$ generated by $x^2+1\in \F_3[x]$.

(a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field. How many elements does the field have?

(b) Let $ax+b+I$ be a nonzero element of the field $\F_3[x]/(x^2+1)$, where $a, b \in \F_3$. Find the inverse of $ax+b+I$.

(c) Recall that the multiplicative group of nonzero elements of a field is a cyclic group.

Confirm that the element $x$ is not a generator of $E^{\times}$, where $E=\F_3[x]/(x^2+1)$ but $x+1$ is a generator.

Read solution

LoadingAdd to solve later

Torsion Subgroup of an Abelian Group, Quotient is a Torsion-Free Abelian Group

Problem 307

Let $A$ be an abelian group and let $T(A)$ denote the set of elements of $A$ that have finite order.

(a) Prove that $T(A)$ is a subgroup of $A$.

(The subgroup $T(A)$ is called the torsion subgroup of the abelian group $A$ and elements of $T(A)$ are called torsion elements.)

(b) Prove that the quotient group $G=A/T(A)$ is a torsion-free abelian group. That is, the only element of $G$ that has finite order is the identity element.

Read solution

LoadingAdd to solve later