Tagged: inverse linear transformation

Find the Inverse Linear Transformation if the Linear Transformation is an Isomorphism

Problem 553

Let $T:\R^3 \to \R^3$ be the linear transformation defined by the formula
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \,\right)=\begin{bmatrix}
x_1+3x_2-2x_3 \\
2x_1+3x_2 \\
x_2-x_3
\end{bmatrix}.\]

Determine whether $T$ is an isomorphism and if so find the formula for the inverse linear transformation $T^{-1}$.

 
Read solution

LoadingAdd to solve later