Tagged: isomorphism

Vector Space of Functions from a Set to a Vector Space

Problem 705

For a set $S$ and a vector space $V$ over a scalar field $\K$, define the set of all functions from $S$ to $V$
\[ \Fun ( S , V ) = \{ f : S \rightarrow V \} . \]

For $f, g \in \Fun(S, V)$, $z \in \K$, addition and scalar multiplication can be defined by
\[ (f+g)(s) = f(s) + g(s) \, \mbox{ and } (cf)(s) = c (f(s)) \, \mbox{ for all } s \in S . \]

(a) Prove that $\Fun(S, V)$ is a vector space over $\K$. What is the zero element?

(b) Let $S_1 = \{ s \}$ be a set consisting of one element. Find an isomorphism between $\Fun(S_1 , V)$ and $V$ itself. Prove that the map you find is actually a linear isomorpism.

(c) Suppose that $B = \{ e_1 , e_2 , \cdots , e_n \}$ is a basis of $V$. Use $B$ to construct a basis of $\Fun(S_1 , V)$.

(d) Let $S = \{ s_1 , s_2 , \cdots , s_m \}$. Construct a linear isomorphism between $\Fun(S, V)$ and the vector space of $n$-tuples of $V$, defined as
\[ V^m = \{ (v_1 , v_2 , \cdots , v_m ) \mid v_i \in V \mbox{ for all } 1 \leq i \leq m \} . \]

(e) Use the basis $B$ of $V$ to constract a basis of $\Fun(S, V)$ for an arbitrary finite set $S$. What is the dimension of $\Fun(S, V)$?

(f) Let $W \subseteq V$ be a subspace. Prove that $\Fun(S, W)$ is a subspace of $\Fun(S, V)$.

 
Read solution

LoadingAdd to solve later

Group Homomorphism from $\Z/n\Z$ to $\Z/m\Z$ When $m$ Divides $n$

Problem 613

Let $m$ and $n$ be positive integers such that $m \mid n$.

(a) Prove that the map $\phi:\Zmod{n} \to \Zmod{m}$ sending $a+n\Z$ to $a+m\Z$ for any $a\in \Z$ is well-defined.

(b) Prove that $\phi$ is a group homomorphism.

(c) Prove that $\phi$ is surjective.

(d) Determine the group structure of the kernel of $\phi$.

 
Read solution

LoadingAdd to solve later

An Orthogonal Transformation from $\R^n$ to $\R^n$ is an Isomorphism

Problem 592

Let $\R^n$ be an inner product space with inner product $\langle \mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\trans}\mathbf{y}$ for $\mathbf{x}, \mathbf{y}\in \R^n$.

A linear transformation $T:\R^n \to \R^n$ is called orthogonal transformation if for all $\mathbf{x}, \mathbf{y}\in \R^n$, it satisfies
\[\langle T(\mathbf{x}), T(\mathbf{y})\rangle=\langle\mathbf{x}, \mathbf{y} \rangle.\]

Prove that if $T:\R^n\to \R^n$ is an orthogonal transformation, then $T$ is an isomorphism.

 
Read solution

LoadingAdd to solve later

Find the Inverse Linear Transformation if the Linear Transformation is an Isomorphism

Problem 553

Let $T:\R^3 \to \R^3$ be the linear transformation defined by the formula
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \,\right)=\begin{bmatrix}
x_1+3x_2-2x_3 \\
2x_1+3x_2 \\
x_2-x_3
\end{bmatrix}.\]

Determine whether $T$ is an isomorphism and if so find the formula for the inverse linear transformation $T^{-1}$.

 
Read solution

LoadingAdd to solve later

The Additive Group $\R$ is Isomorphic to the Multiplicative Group $\R^{+}$ by Exponent Function

Problem 322

Let $\R=(\R, +)$ be the additive group of real numbers and let $\R^{\times}=(\R\setminus\{0\}, \cdot)$ be the multiplicative group of real numbers.

(a) Prove that the map $\exp:\R \to \R^{\times}$ defined by
\[\exp(x)=e^x\] is an injective group homomorphism.

(b) Prove that the additive group $\R$ is isomorphic to the multiplicative group
\[\R^{+}=\{x \in \R \mid x > 0\}.\]

 
Read solution

LoadingAdd to solve later

The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$

Problem 283

Let $F$ be a field and let
\[H(F)=\left\{\, \begin{bmatrix}
1 & a & b \\
0 &1 &c \\
0 & 0 & 1
\end{bmatrix} \quad \middle| \quad \text{ for any} a,b,c\in F\, \right\}\] be the Heisenberg group over $F$.
(The group operation of the Heisenberg group is matrix multiplication.)

Determine which matrices lie in the center of $H(F)$ and prove that the center $Z\big(H(F)\big)$ is isomorphic to the additive group $F$.

 
Read solution

LoadingAdd to solve later

Explicit Field Isomorphism of Finite Fields

Problem 233

(a) Let $f_1(x)$ and $f_2(x)$ be irreducible polynomials over a finite field $\F_p$, where $p$ is a prime number. Suppose that $f_1(x)$ and $f_2(x)$ have the same degrees. Then show that fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic.

(b) Show that the polynomials $x^3-x+1$ and $x^3-x-1$ are both irreducible polynomials over the finite field $\F_3$.

(c) Exhibit an explicit isomorphism between the splitting fields of $x^3-x+1$ and $x^3-x-1$ over $\F_3$.

 
Read solution

LoadingAdd to solve later

The Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral Domain

Problem 198

Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain.

Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a field.

 
Read solution

LoadingAdd to solve later

Isomorphism Criterion of Semidirect Product of Groups

Problem 113

Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism.
The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation
\[(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),\] where $a_i \in A, b_i \in B$ for $i=1, 2$.

Let $f: A \to A’$ and $g:B \to B’$ be group isomorphisms. Define $\phi’: B’\to \Aut(A’)$ by sending $b’ \in B’$ to $f\circ \phi(g^{-1}(b’))\circ f^{-1}$.

\[\require{AMScd}
\begin{CD}
B @>{\phi}>> \Aut(A)\\
@A{g^{-1}}AA @VV{\sigma_f}V \\
B’ @>{\phi’}>> \Aut(A’)
\end{CD}\] Here $\sigma_f:\Aut(A) \to \Aut(A’)$ is defined by $ \alpha \in \Aut(A) \mapsto f\alpha f^{-1}\in \Aut(A’)$.
Then show that
\[A \rtimes_{\phi} B \cong A’ \rtimes_{\phi’} B’.\]

 
Read solution

LoadingAdd to solve later