Subspace Spanned By Cosine and Sine Functions
Problem 435
Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$.
Define the map $f:\R^2 \to \calF[0, 2\pi]$ by
\[\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta \sin x.\]
We put
\[V:=\im f=\{\alpha \cos x + \beta \sin x \in \calF[0, 2\pi] \mid \alpha, \beta \in \R\}.\]
(a) Prove that the map $f$ is a linear transformation.
(b) Prove that the set $\{\cos x, \sin x\}$ is a basis of the vector space $V$.
(c) Prove that the kernel is trivial, that is, $\ker f=\{\mathbf{0}\}$.
(This yields an isomorphism of $\R^2$ and $V$.)
(d) Define a map $g:V \to V$ by
\[g(\alpha \cos x + \beta \sin x):=\frac{d}{dx}(\alpha \cos x+ \beta \sin x)=\beta \cos x -\alpha \sin x.\]
Prove that the map $g$ is a linear transformation.
(e) Find the matrix representation of the linear transformation $g$ with respect to the basis $\{\cos x, \sin x\}$.
(Kyoto University, Linear Algebra exam problem)
Add to solve later