Tagged: length of a vector

Dot Product, Lengths, and Distances of Complex Vectors

Problem 689

For this problem, use the complex vectors
\[ \mathbf{w}_1 = \begin{bmatrix} 1 + i \\ 1 – i \\ 0 \end{bmatrix} , \, \mathbf{w}_2 = \begin{bmatrix} -i \\ 0 \\ 2 – i \end{bmatrix} , \, \mathbf{w}_3 = \begin{bmatrix} 2+i \\ 1 – 3i \\ 2i \end{bmatrix} . \]

Suppose $\mathbf{w}_4$ is another complex vector which is orthogonal to both $\mathbf{w}_2$ and $\mathbf{w}_3$, and satisfies $\mathbf{w}_1 \cdot \mathbf{w}_4 = 2i$ and $\| \mathbf{w}_4 \| = 3$.

Calculate the following expressions:

(a) $ \mathbf{w}_1 \cdot \mathbf{w}_2 $.

(b) $ \mathbf{w}_1 \cdot \mathbf{w}_3 $.

(c) $((2+i)\mathbf{w}_1 – (1+i)\mathbf{w}_2 ) \cdot \mathbf{w}_4$.

(d) $\| \mathbf{w}_1 \| , \| \mathbf{w}_2 \|$, and $\| \mathbf{w}_3 \|$.

(e) $\| 3 \mathbf{w}_4 \|$.

(f) What is the distance between $\mathbf{w}_2$ and $\mathbf{w}_3$?

 
Read solution

LoadingAdd to solve later

Inner Products, Lengths, and Distances of 3-Dimensional Real Vectors

Problem 687

For this problem, use the real vectors
\[ \mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} , \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} , \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} . \] Suppose that $\mathbf{v}_4$ is another vector which is orthogonal to $\mathbf{v}_1$ and $\mathbf{v}_3$, and satisfying
\[ \mathbf{v}_2 \cdot \mathbf{v}_4 = -3 . \]

Calculate the following expressions:

(a) $\mathbf{v}_1 \cdot \mathbf{v}_2 $.

(b) $\mathbf{v}_3 \cdot \mathbf{v}_4$.

(c) $( 2 \mathbf{v}_1 + 3 \mathbf{v}_2 – \mathbf{v}_3 ) \cdot \mathbf{v}_4 $.

(d) $\| \mathbf{v}_1 \| , \, \| \mathbf{v}_2 \| , \, \| \mathbf{v}_3 \| $.

(e) What is the distance between $\mathbf{v}_1$ and $\mathbf{v}_2$?

 
Read solution

LoadingAdd to solve later

7 Problems on Skew-Symmetric Matrices

Problem 564

Let $A$ and $B$ be $n\times n$ skew-symmetric matrices. Namely $A^{\trans}=-A$ and $B^{\trans}=-B$.

(a) Prove that $A+B$ is skew-symmetric.

(b) Prove that $cA$ is skew-symmetric for any scalar $c$.

(c) Let $P$ be an $m\times n$ matrix. Prove that $P^{\trans}AP$ is skew-symmetric.

(d) Suppose that $A$ is real skew-symmetric. Prove that $iA$ is an Hermitian matrix.

(e) Prove that if $AB=-BA$, then $AB$ is a skew-symmetric matrix.

(f) Let $\mathbf{v}$ be an $n$-dimensional column vecotor. Prove that $\mathbf{v}^{\trans}A\mathbf{v}=0$.

(g) Suppose that $A$ is a real skew-symmetric matrix and $A^2\mathbf{v}=\mathbf{0}$ for some vector $\mathbf{v}\in \R^n$. Then prove that $A\mathbf{v}=\mathbf{0}$.

 
Read solution

LoadingAdd to solve later

Unit Vectors and Idempotent Matrices

Problem 527

A square matrix $A$ is called idempotent if $A^2=A$.


(a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$.
Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$.

Prove that $P$ is an idempotent matrix.


(b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be unit vectors in $\R^n$ such that $\mathbf{u}$ and $\mathbf{v}$ are orthogonal.
Let $Q=\mathbf{u}\mathbf{u}^{\trans}+\mathbf{v}\mathbf{v}^{\trans}$.

Prove that $Q$ is an idempotent matrix.


(c) Prove that each nonzero vector of the form $a\mathbf{u}+b\mathbf{v}$ for some $a, b\in \R$ is an eigenvector corresponding to the eigenvalue $1$ for the matrix $Q$ in part (b).

 
Read solution

LoadingAdd to solve later

Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like.

Problem 381

Consider the matrix
\[A=\begin{bmatrix}
3/2 & 2\\
-1& -3/2
\end{bmatrix} \in M_{2\times 2}(\R).\]

(a) Find the eigenvalues and corresponding eigenvectors of $A$.

(b) Show that for $\mathbf{v}=\begin{bmatrix}
1 \\
0
\end{bmatrix}\in \R^2$, we can choose $n$ large enough so that the length $\|A^n\mathbf{v}\|$ is as small as we like.

(University of California, Berkeley, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Find the Distance Between Two Vectors if the Lengths and the Dot Product are Given

Problem 254

Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are
\[\|\mathbf{a}\|=\|\mathbf{b}\|=1\] and the inner product
\[\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.\]

Then determine the length $\|\mathbf{a}-\mathbf{b}\|$.
(Note that this length is the distance between $\mathbf{a}$ and $\mathbf{b}$.)

 
Read solution

LoadingAdd to solve later

Inner Product, Norm, and Orthogonal Vectors

Problem 162

Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in $\mathbf{u_1}=\mathbf{u_2}+a\mathbf{u}_3$.

(The Ohio State University, Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later