Tagged: line

The Matrix for the Linear Transformation of the Reflection Across a Line in the Plane

Problem 498

Let $T:\R^2 \to \R^2$ be a linear transformation of the $2$-dimensional vector space $\R^2$ (the $x$-$y$-plane) to itself which is the reflection across a line $y=mx$ for some $m\in \R$.

Then find the matrix representation of the linear transformation $T$ with respect to the standard basis $B=\{\mathbf{e}_1, \mathbf{e}_2\}$ of $\R^2$, where
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}.\]

 
Read solution

LoadingAdd to solve later

A Linear Transformation Preserves Exactly Two Lines If and Only If There are Two Real Non-Zero Eigenvalues

Problem 472

Let $T:\R^2 \to \R^2$ be a linear transformation and let $A$ be the matrix representation of $T$ with respect to the standard basis of $\R^2$.

Prove that the following two statements are equivalent.

(a) There are exactly two distinct lines $L_1, L_2$ in $\R^2$ passing through the origin that are mapped onto themselves:
\[T(L_1)=L_1 \text{ and } T(L_2)=L_2.\]

(b) The matrix $A$ has two distinct nonzero real eigenvalues.

 
Read solution

LoadingAdd to solve later