Tagged: linear algebra

Subspaces of Symmetric, Skew-Symmetric Matrices

Problem 143

Let $V$ be the vector space over $\R$ consisting of all $n\times n$ real matrices for some fixed integer $n$. Prove or disprove that the following subsets of $V$ are subspaces of $V$.

(a) The set $S$ consisting of all $n\times n$ symmetric matrices.

(b) The set $T$ consisting of all $n \times n$ skew-symmetric matrices.

(c) The set $U$ consisting of all $n\times n$ nonsingular matrices.

 
Read solution

LoadingAdd to solve later

Find a Value of a Linear Transformation From $\R^2$ to $\R^3$

Problem 142

Let $T:\R^2 \to \R^3$ be a linear transformation such that $T(\mathbf{e}_1)=\mathbf{u}_1$ and $T(\mathbf{e}_2)=\mathbf{u}_2$, where $\mathbf{e}_1=\begin{bmatrix}
1 \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}$ are unit vectors of $\R^2$ and
\[\mathbf{u}_1= \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}, \quad \mathbf{u}_2=\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}.\] Then find $T\left(\begin{bmatrix}
3 \\
-2
\end{bmatrix}\right)$.

 
Read solution

LoadingAdd to solve later

Linear Independent Vectors and the Vector Space Spanned By Them

Problem 141

Let $V$ be a vector space over a field $K$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be linearly independent vectors in $V$. Let $U$ be the subspace of $V$ spanned by these vectors, that is, $U=\Span \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$.
Let $\mathbf{u}_{n+1}\in V$. Show that $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n, \mathbf{u}_{n+1}$ are linearly independent if and only if $\mathbf{u}_{n+1} \not \in U$.

 
Read solution

LoadingAdd to solve later

Find a Basis and the Dimension of the Subspace of the 4-Dimensional Vector Space

Problem 131

Let $V$ be the following subspace of the $4$-dimensional vector space $\R^4$.
\[V:=\left\{ \quad\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} \in \R^4
\quad \middle| \quad
x_1-x_2+x_3-x_4=0 \quad\right\}.\] Find a basis of the subspace $V$ and its dimension.

 
Read solution

LoadingAdd to solve later

Non-Example of a Subspace in 3-dimensional Vector Space $\R^3$

Problem 125

Let $S$ be the following subset of the 3-dimensional vector space $\R^3$.
\[S=\left\{ \mathbf{x}\in \R^3 \quad \middle| \quad \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}, x_1, x_2, x_3 \in \Z \right\}, \] where $\Z$ is the set of all integers.
Determine whether $S$ is a subspace of $\R^3$.

 
Read solution

LoadingAdd to solve later

The Null Space (the Kernel) of a Matrix is a Subspace of $\R^n$

Problem 121

Let $A$ be an $m \times n$ real matrix. Then the null space $\calN(A)$ of $A$ is defined by
\[ \calN(A)=\{ \mathbf{x}\in \R^n \mid A\mathbf{x}=\mathbf{0}_m\}.\] That is, the null space is the set of solutions to the homogeneous system $A\mathbf{x}=\mathbf{0}_m$.

Prove that the null space $\calN(A)$ is a subspace of the vector space $\R^n$.
(Note that the null space is also called the kernel of $A$.)
 
Read solution

LoadingAdd to solve later

If Vectors are Linearly Dependent, then What Happens When We Add One More Vectors?

Problem 120

Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are linearly dependent $n$-dimensional real vectors.

For any vector $\mathbf{v}_{r+1} \in \R^n$, determine whether the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}$ are linearly independent or linearly dependent.

 
Read solution

LoadingAdd to solve later